python统计三国_如何用python对《三国演义》、《红楼梦》等名著开展词云分析及字频统计、出场统计等工作。...
以下以《紅樓夢》為例進行設計。
在制作詞云圖及統計之前,需要下載python的幾個庫,wordcloud、jieba以及imageio等,我的操作系統為Windows10,IDE環境為idle,下載方式就直接搜索cmd,打開命令提示符窗口,輸入pip install wordcloud等庫進行下載即可。像這樣,就下載成功了
要對名著進行開展,必不可少的就是這些名著的電子書,安裝好庫就要進行對電子書的下載,這個鏈接可以下載《紅樓夢》的txt電子書:紅樓夢txt下載|紅樓夢txt全集下載-紅樓夢百度云下載-TXT下載站?www.txtxzz.com這是我用到的背景圖
以下為我具體的操作代碼,具體的注釋我都加在了里面:
import jieba
import wordcloud
from imageio import imread
# 1、進行詞云分析,即詞云圖的制作
def ciyun():
mask = imread("林黛玉.png") # 打開詞云背景圖
tf = open('紅樓夢.txt','rt',encoding = 'utf-8') # 打開《林黛玉》txt文檔
txt = ''
for line in tf.readlines():
for j in ",.“”?:《》--!":
line.replace('',j)
txt += line
jieba_cut = jieba.lcut(txt) # 利用jieba對文檔進行全文分詞
c = wordcloud.WordCloud(width = 1200,
font_path = 'msyh.ttc',
height = 800,
background_color='white',
mask=mask) # 進行背景、畫布大小、顏色等處理
c.generate(' '.join(jieba_cut))
c.to_file('紅樓夢.png')
tf.close()
ciyun()
# 2、出場統計的制作
excludes = {"什么","一個","我們","那里","你們","如今","說道","知道","起來","姑娘","這里","出來","他們","眾人","自己",
"一面","只見","怎么","奶奶","兩個","沒有","不是","不知","這個","聽見","這樣","進來","咱們","告訴","就是",
"東西","襲人","回來","只是","大家","只得","老爺","丫頭","這些","不敢","出去","所以","不過","的話","不好",
"姐姐","探春","鴛鴦","一時","不能","過來","心里","如此","今日","銀子","幾個","答應","二人","還有","只管",
"這么","說話","一回","那邊","這話","外頭","打發","自然","今兒","罷了","屋里","那些","聽說","小丫頭","不用","如何"}
# 將這些會干擾的詞匯列出并且刪除,以免影響最后的結果
txt = open("紅樓夢.txt","r",encoding='utf-8').read() # 打開《紅樓夢》txt電子書
words = jieba.lcut(txt) # 利用jieba進行全文分詞
paixv = {}
for word in words:
if len(word) == 1: # 如果分割的長度是一,可能是語氣詞之類的,所以刪除
continue
else:
paixv[word] = paixv.get(word,0) + 1
for word in excludes:
del(paixv[word]) # 如果列出的干擾詞匯在分完詞后的所有詞匯中那么刪除
items = list(paixv.items()) # 將字典轉換為列表
items.sort(key=lambda x:x[1],reverse = True) # 將列表進行降序排列
for i in range(20): # 打印出前20個出場最多的人物名
word,count = items[i]
print("{0:<10}{1:>5}".format(word,count))
# 3、字頻統計的制作
import os
import codecs
import jieba
import pandas as pd
from wordcloud import WordCloud
from scipy.misc import imread
import matplotlib.pyplot as plt
os.chdir("/Users/Zhaohaibo/Desktop")
class Hlm(object):
def Zipin(self, readdoc, writedoc): # readdoc:要讀取的文件名,writedoc:要寫入的文件名
word_lst = []
word_dict = {}
exclude_str = ",。!?、()【】<>《》=:+-*—“”…"
with open(readdoc,"r") as fileIn ,open(writedoc,'w') as fileOut:
# 添加每一個字到列表中:
for line in fileIn:
for char in line:
word_lst.append(char)
# 用字典統計每個字出現的個數:
for char in word_lst:
if char not in exclude_str:
if char.strip() not in word_dict: # strip去除各種空白
word_dict[char] = 1
else :
word_dict[char] += 1
# 排序x[1]是按字頻排序,x[0]則是按字排序
lstWords = sorted(word_dict.items(), key=lambda x:x[1], reverse=True)
# 輸出結果 (前100)
print ('字符\t字頻')
print ('=============')
for e in lstWords[:100]:
print ('%s\t%d' % e)
fileOut.write('%s, %d\n' % e)
# 詞頻表(DataFrame格式)
def Cipin(self, doc): # doc:要讀取的文件名
wdict = {}
f = open(doc,"r")
for line in f.readlines():
words = jieba.cut(line)
for w in words:
if(w not in wdict):
wdict[w] = 1
else:
wdict[w] += 1
# 導入停用詞表
stop = pd.read_csv('stoplist.txt', encoding = 'utf-8', sep = 'zhao', header = None,engine = 'python') # sep:分割符號(需要用一個確定不會出現在停用詞表中的單詞)
stop.columns = ['word']
stop = [' '] + list(stop.word) # python讀取時不會讀取到空格。但空格依舊需要去除。所以加上空格; 讀取后的stop是series的結構,需要轉成列表
for i in range(len(stop)):
if(stop[i] in wdict):
wdict.pop(stop[i])
ind = list(wdict.keys())
val = list(wdict.values())
ind = pd.Series(ind)
val = pd.Series(val)
data = pd.DataFrame()
data['詞'] = ind
data['詞頻'] = val
return data
最后的結果截圖為:
詞云圖:
出場統計:
字頻統計:有點多就只截一部分
以上便為《紅樓夢》的詞云分析及字頻統計、出場統計。主要是為了記錄一下我昨天的課程設計作業,代碼有借鑒。
總結
以上是生活随笔為你收集整理的python统计三国_如何用python对《三国演义》、《红楼梦》等名著开展词云分析及字频统计、出场统计等工作。...的全部內容,希望文章能夠幫你解決所遇到的問題。
 
                            
                        - 上一篇: 系统提示无法删除文件或文件夹的常用解决办
- 下一篇: 3.SEO优化--网站死链解决
