数学--数论--HDU - 6322 打表找规律
生活随笔
收集整理的這篇文章主要介紹了
数学--数论--HDU - 6322 打表找规律
小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.
In number theory, Euler's totient function φ(n) counts the positive integers up to a given integer n that are relatively prime to n. It can be defined more formally as the number of integers k in the range 1≤k≤n for which the greatest common divisor gcd(n,k) is equal to 1.
For example, φ(9)=6 because 1,2,4,5,7 and 8 are coprime with 9. As another example, φ(1)=1 since for n=1 the only integer in the range from 1 to n is 1 itself, and gcd(1,1)=1.
A composite number is a positive integer that can be formed by multiplying together two smaller positive integers. Equivalently, it is a positive integer that has at least one divisor other than 1 and itself. So obviously 1 and all prime numbers are not composite number.
In this problem, given integer k, your task is to find the k-th smallest positive integer n, that φ(n) is a composite number.
Input
The first line of the input contains an integer T(1≤T≤100000), denoting the number of test cases. In each test case, there is only one integer k(1≤k≤109).Output
For each test case, print a single line containing an integer, denoting the answer.Sample Input
2 1 2Sample Output
5 7打表看了一下5之后,除了6之外都不是素?cái)?shù)。
#include<bits/stdc++.h> using namespace std;int main() {int t;long long k;cin>>t;while(t--){cin>>k;if(k==1) cout<<5<<endl;else cout<<k+5<<endl;}return 0; }總結(jié)
以上是生活随笔為你收集整理的数学--数论--HDU - 6322 打表找规律的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。
- 上一篇: 数学--数论--原根(循环群生成元)
- 下一篇: Linux中netstat命令怎么用