3atv精品不卡视频,97人人超碰国产精品最新,中文字幕av一区二区三区人妻少妇,久久久精品波多野结衣,日韩一区二区三区精品

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

建立神经网络来预测贷款风险

發布時間:2023/12/15 编程问答 27 豆豆
生活随笔 收集整理的這篇文章主要介紹了 建立神经网络来预测贷款风险 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

深度分析 (In-Depth Analysis)

  • Introduction

    介紹

  • Data cleaning

    數據清理

  • Building the neural networks

    建立神經網絡

  • Saving the final model

    保存最終模型

  • Building the API

    構建API

  • 介紹 (Introduction)

    LendingClub is the world’s largest peer-to-peer lending platform. Until recently (through the end of 2018), LendingClub published a public dataset of all loans issued since the company’s launch in 2007. I’m accessing the dataset via Kaggle.

    LendingClub是世界上最大的點對點借貸平臺。 直到最近(到2018年底),LendingClub都發布了自該公司于2007年成立以來發行的所有貸款的公開數據集。我正在通過Kaggle訪問該數據集。

    (2260701, 151)

    With 2,260,701 loans to look at and 151 potential variables, my goal is to create a neural network model with TensorFlow and Keras to predict the fraction of an expected loan return that a prospective borrower will pay back. This will require a lot of data cleaning given the state of the dataset, and I’ll walk through that entire process here. After building and training the network, I’ll create a public API to serve that model.

    我需要查看2,260,701筆貸款和151個潛在變量,我的目標是使用TensorFlow和Keras創建一個神經網絡模型,以預測潛在借款人將償還的預期貸款回報的比例。 給定數據集的狀態,這將需要大量數據清理,在此我將逐步介紹整個過程。 在構建并訓練了網絡之后,我將創建一個公共API來服務于該模型。

    Also, as you may have guessed from the preceding code block, this post is adapted from a Jupyter Notebook. If you’d like to follow along in your own notebook, go ahead and fork mine on Kaggle or GitHub.

    另外,正如您可能從前面的代碼塊中猜到的那樣,此文章改編自Jupyter Notebook。 如果您想繼續使用自己的筆記本,請繼續在Kaggle或GitHub上進行挖掘。

    數據清理 (Data cleaning)

    I’ll first look at the data dictionary (downloaded directly from LendingClub’s website) to get an idea of how to create the desired output variable and which remaining features are available at the point of loan application (to avoid data leakage).

    我將首先查看數據字典(直接從LendingClub的網站下載),以了解如何創建所需的輸出變量以及在貸款申請時可以使用哪些其余功能(以避免數據泄漏)。

    ?id: A unique LC assigned ID for the loan listing.
    ?member_id: A unique LC assigned Id for the borrower member.
    ?loan_amnt: The listed amount of the loan applied for by the borrower. If at some point in time, the credit department reduces the loan amount, then it will be reflected in this value.
    ?funded_amnt: The total amount committed to that loan at that point in time.
    ?funded_amnt_inv: The total amount committed by investors for that loan at that point in time.
    ?term: The number of payments on the loan. Values are in months and can be either 36 or 60.
    ?int_rate: Interest Rate on the loan
    ?installment: The monthly payment owed by the borrower if the loan originates.
    ?grade: LC assigned loan grade
    ?sub_grade: LC assigned loan subgrade
    ?emp_title: The job title supplied by the Borrower when applying for the loan.*
    ?emp_length: Employment length in years. Possible values are between 0 and 10 where 0 means less than one year and 10 means ten or more years.
    ?home_ownership: The home ownership status provided by the borrower during registration or obtained from the credit report. Our values are: RENT, OWN, MORTGAGE, OTHER
    ?annual_inc: The self-reported annual income provided by the borrower during registration.
    ?verification_status: Indicates if income was verified by LC, not verified, or if the income source was verified
    ?issue_d: The month which the loan was funded
    ?loan_status: Current status of the loan
    ?pymnt_plan: Indicates if a payment plan has been put in place for the loan
    ?url: URL for the LC page with listing data.
    ?desc: Loan description provided by the borrower
    ?purpose: A category provided by the borrower for the loan request.
    ?title: The loan title provided by the borrower
    ?zip_code: The first 3 numbers of the zip code provided by the borrower in the loan application.
    ?addr_state: The state provided by the borrower in the loan application
    ?dti: A ratio calculated using the borrower’s total monthly debt payments on the total debt obligations, excluding mortgage and the requested LC loan, divided by the borrower’s self-reported monthly income.
    ?delinq_2yrs: The number of 30+ days past-due incidences of delinquency in the borrower's credit file for the past 2 years
    ?earliest_cr_line: The month the borrower's earliest reported credit line was opened
    ?fico_range_low: The lower boundary range the borrower’s FICO at loan origination belongs to.
    ?fico_range_high: The upper boundary range the borrower’s FICO at loan origination belongs to.
    ?inq_last_6mths: The number of inquiries in past 6 months (excluding auto and mortgage inquiries)
    ?mths_since_last_delinq: The number of months since the borrower's last delinquency.
    ?mths_since_last_record: The number of months since the last public record.
    ?open_acc: The number of open credit lines in the borrower's credit file.
    ?pub_rec: Number of derogatory public records
    ?revol_bal: Total credit revolving balance
    ?revol_util: Revolving line utilization rate, or the amount of credit the borrower is using relative to all available revolving credit.
    ?total_acc: The total number of credit lines currently in the borrower's credit file
    ?initial_list_status: The initial listing status of the loan. Possible values are – W, F
    ?out_prncp: Remaining outstanding principal for total amount funded
    ?out_prncp_inv: Remaining outstanding principal for portion of total amount funded by investors
    ?total_pymnt: Payments received to date for total amount funded
    ?total_pymnt_inv: Payments received to date for portion of total amount funded by investors
    ?total_rec_prncp: Principal received to date
    ?total_rec_int: Interest received to date
    ?total_rec_late_fee: Late fees received to date
    ?recoveries: post charge off gross recovery
    ?collection_recovery_fee: post charge off collection fee
    ?last_pymnt_d: Last month payment was received
    ?last_pymnt_amnt: Last total payment amount received
    ?next_pymnt_d: Next scheduled payment date
    ?last_credit_pull_d: The most recent month LC pulled credit for this loan
    ?last_fico_range_high: The upper boundary range the borrower’s last FICO pulled belongs to.
    ?last_fico_range_low: The lower boundary range the borrower’s last FICO pulled belongs to.
    ?collections_12_mths_ex_med: Number of collections in 12 months excluding medical collections
    ?mths_since_last_major_derog: Months since most recent 90-day or worse rating
    ?policy_code: publicly available policy_code=1
    new products not publicly available policy_code=2
    ?application_type: Indicates whether the loan is an individual application or a joint application with two co-borrowers
    ?annual_inc_joint: The combined self-reported annual income provided by the co-borrowers during registration
    ?dti_joint: A ratio calculated using the co-borrowers' total monthly payments on the total debt obligations, excluding mortgages and the requested LC loan, divided by the co-borrowers' combined self-reported monthly income
    ?verification_status_joint: Indicates if the co-borrowers' joint income was verified by LC, not verified, or if the income source was verified
    ?acc_now_delinq: The number of accounts on which the borrower is now delinquent.
    ?tot_coll_amt: Total collection amounts ever owed
    ?tot_cur_bal: Total current balance of all accounts
    ?open_acc_6m: Number of open trades in last 6 months
    ?open_act_il: Number of currently active installment trades
    ?open_il_12m: Number of installment accounts opened in past 12 months
    ?open_il_24m: Number of installment accounts opened in past 24 months
    ?mths_since_rcnt_il: Months since most recent installment accounts opened
    ?total_bal_il: Total current balance of all installment accounts
    ?il_util: Ratio of total current balance to high credit/credit limit on all install acct
    ?open_rv_12m: Number of revolving trades opened in past 12 months
    ?open_rv_24m: Number of revolving trades opened in past 24 months
    ?max_bal_bc: Maximum current balance owed on all revolving accounts
    ?all_util: Balance to credit limit on all trades
    ?total_rev_hi_lim: Total revolving high credit/credit limit
    ?inq_fi: Number of personal finance inquiries
    ?total_cu_tl: Number of finance trades
    ?inq_last_12m: Number of credit inquiries in past 12 months
    ?acc_open_past_24mths: Number of trades opened in past 24 months.
    ?avg_cur_bal: Average current balance of all accounts
    ?bc_open_to_buy: Total open to buy on revolving bankcards.
    ?bc_util: Ratio of total current balance to high credit/credit limit for all bankcard accounts.
    ?chargeoff_within_12_mths: Number of charge-offs within 12 months
    ?delinq_amnt: The past-due amount owed for the accounts on which the borrower is now delinquent.
    ?mo_sin_old_il_acct: Months since oldest bank installment account opened
    ?mo_sin_old_rev_tl_op: Months since oldest revolving account opened
    ?mo_sin_rcnt_rev_tl_op: Months since most recent revolving account opened
    ?mo_sin_rcnt_tl: Months since most recent account opened
    ?mort_acc: Number of mortgage accounts.
    ?mths_since_recent_bc: Months since most recent bankcard account opened.
    ?mths_since_recent_bc_dlq: Months since most recent bankcard delinquency
    ?mths_since_recent_inq: Months since most recent inquiry.
    ?mths_since_recent_revol_delinq: Months since most recent revolving delinquency.
    ?num_accts_ever_120_pd: Number of accounts ever 120 or more days past due
    ?num_actv_bc_tl: Number of currently active bankcard accounts
    ?num_actv_rev_tl: Number of currently active revolving trades
    ?num_bc_sats: Number of satisfactory bankcard accounts
    ?num_bc_tl: Number of bankcard accounts
    ?num_il_tl: Number of installment accounts
    ?num_op_rev_tl: Number of open revolving accounts
    ?num_rev_accts: Number of revolving accounts
    ?num_rev_tl_bal_gt_0: Number of revolving trades with balance >0
    ?num_sats: Number of satisfactory accounts
    ?num_tl_120dpd_2m: Number of accounts currently 120 days past due (updated in past 2 months)
    ?num_tl_30dpd: Number of accounts currently 30 days past due (updated in past 2 months)
    ?num_tl_90g_dpd_24m: Number of accounts 90 or more days past due in last 24 months
    ?num_tl_op_past_12m: Number of accounts opened in past 12 months
    ?pct_tl_nvr_dlq: Percent of trades never delinquent
    ?percent_bc_gt_75: Percentage of all bankcard accounts > 75% of limit.
    ?pub_rec_bankruptcies: Number of public record bankruptcies
    ?tax_liens: Number of tax liens
    ?tot_hi_cred_lim: Total high credit/credit limit
    ?total_bal_ex_mort: Total credit balance excluding mortgage
    ?total_bc_limit: Total bankcard high credit/credit limit
    ?total_il_high_credit_limit: Total installment high credit/credit limit
    ?revol_bal_joint: Sum of revolving credit balance of the co-borrowers, net of duplicate balances
    ?sec_app_fico_range_low: FICO range (high) for the secondary applicant
    ?sec_app_fico_range_high: FICO range (low) for the secondary applicant
    ?sec_app_earliest_cr_line: Earliest credit line at time of application for the secondary applicant
    ?sec_app_inq_last_6mths: Credit inquiries in the last 6 months at time of application for the secondary applicant
    ?sec_app_mort_acc: Number of mortgage accounts at time of application for the secondary applicant
    ?sec_app_open_acc: Number of open trades at time of application for the secondary applicant
    ?sec_app_revol_util: Ratio of total current balance to high credit/credit limit for all revolving accounts
    ?sec_app_open_act_il: Number of currently active installment trades at time of application for the secondary applicant
    ?sec_app_num_rev_accts: Number of revolving accounts at time of application for the secondary applicant
    ?sec_app_chargeoff_within_12_mths: Number of charge-offs within last 12 months at time of application for the secondary applicant
    ?sec_app_collections_12_mths_ex_med: Number of collections within last 12 months excluding medical collections at time of application for the secondary applicant
    ?sec_app_mths_since_last_major_derog: Months since most recent 90-day or worse rating at time of application for the secondary applicant
    ?hardship_flag: Flags whether or not the borrower is on a hardship plan
    ?hardship_type: Describes the hardship plan offering
    ?hardship_reason: Describes the reason the hardship plan was offered
    ?hardship_status: Describes if the hardship plan is active, pending, canceled, completed, or broken
    ?deferral_term: Amount of months that the borrower is expected to pay less than the contractual monthly payment amount due to a hardship plan
    ?hardship_amount: The interest payment that the borrower has committed to make each month while they are on a hardship plan
    ?hardship_start_date: The start date of the hardship plan period
    ?hardship_end_date: The end date of the hardship plan period
    ?payment_plan_start_date: The day the first hardship plan payment is due. For example, if a borrower has a hardship plan period of 3 months, the start date is the start of the three-month period in which the borrower is allowed to make interest-only payments.
    ?hardship_length: The number of months the borrower will make smaller payments than normally obligated due to a hardship plan
    ?hardship_dpd: Account days past due as of the hardship plan start date
    ?hardship_loan_status: Loan Status as of the hardship plan start date
    ?orig_projected_additional_accrued_interest: The original projected additional interest amount that will accrue for the given hardship payment plan as of the Hardship Start Date. This field will be null if the borrower has broken their hardship payment plan.
    ?hardship_payoff_balance_amount: The payoff balance amount as of the hardship plan start date
    ?hardship_last_payment_amount: The last payment amount as of the hardship plan start date
    ?disbursement_method: The method by which the borrower receives their loan. Possible values are: CASH, DIRECT_PAY
    ?debt_settlement_flag: Flags whether or not the borrower, who has charged-off, is working with a debt-settlement company.
    ?debt_settlement_flag_date: The most recent date that the Debt_Settlement_Flag has been set
    ?settlement_status: The status of the borrower’s settlement plan. Possible values are: COMPLETE, ACTIVE, BROKEN, CANCELLED, DENIED, DRAFT
    ?settlement_date: The date that the borrower agrees to the settlement plan
    ?settlement_amount: The loan amount that the borrower has agreed to settle for
    ?settlement_percentage: The settlement amount as a percentage of the payoff balance amount on the loan
    ?settlement_term: The number of months that the borrower will be on the settlement plan

    For the output variable (the fraction of expected return that was recovered), I’ll calculated the expected return by multiplying the monthly payment amount (installment) by the number of payments on the loan (term), and I’ll calculate the amount actually received by summing the total principle, interest, late fees, and post-chargeoff gross recovery received (total_rec_prncp, total_rec_int, total_rec_late_fee, recoveries) and subtracting any collection fee (collection_recovery_fee).

    對于輸出變量(收回的預期收益的比例),我將每月還款額( installment )乘以貸款的還款次數( term )來計算出預期收益 ,然后計算出該金額其實總結的總原則,利息,滯納金和后chargeoff收到總回收率( 收到 total_rec_prncp , total_rec_int , total_rec_late_fee , recoveries )并減去任何費征收( collection_recovery_fee )。

    Several other columns contain either irrelevant demographic data or data not created until after a loan is accepted, so those will need to be removed. I’ll hold onto issue_d (the month and year the loan was funded) for now, though, in case I want to compare variables to the date of the loan.

    其他幾列包含不相關的人口統計數據或直到接受貸款后才創建的數據,因此需要將其刪除。 不過,如果我想將變量與貸款日期進行比較,我暫時保留issue_d (貸款資金的年月)。

    emp_title (the applicant’s job title) does seem relevant in the context of a loan, but it may have too many unique values to be useful.

    emp_title (申請人的職務)在貸款方面似乎確實相關,但是它可能具有太多獨特的值,無法使用。

    512694

    Too many unique values indeed. In a future version of this model, I could perhaps try to generate a feature from this column by aggregating job titles into categories, but that effort may have a low return on investment, since there are already columns for annual income and length of employment.

    確實有太多獨特的價值。 在此模型的未來版本中,我也許可以嘗試通過將職稱匯總到類別中來從此列中生成功能,但是這種努力可能會降低投資回報率,因為已經有用于年收入和就業時間的列。

    Two other interesting columns that I’ll also remove are title and desc (“description”), which are both freeform text entries written by the borrower. These could be fascinating subjects for natural language processing, but that’s outside the scope of the current project. Perhaps in the future, I could generate additional features from these fields using measures like syntactic complexity, word count, or keyword inclusion.

    我還將刪除的另外兩個有趣的列是title和desc (“描述”),它們都是借款人編寫的自由格式文本條目。 這些可能是自然語言處理的有趣主題,但這不在當前項目的范圍內。 也許將來,我可以使用語法復雜性,字數統計或關鍵字包含之類的方法從這些字段中生成其他功能。

    Before creating the output variable, however, I must take a closer look at loan_status, to see if any loans in the dataset are still open.

    但是,在創建輸出變量之前,我必須仔細查看loan_status ,以查看數據集中是否還有任何借貸。

    loan_status
    Charged Off 268559
    Current 878317
    Default 40
    Does not meet the credit policy. Status:Charged Off 761
    Does not meet the credit policy. Status:Fully Paid 1988
    Fully Paid 1076751
    In Grace Period 8436
    Late (16-30 days) 4349
    Late (31-120 days) 21467
    Name: loan_status, dtype: int64

    For practical purposes, I’ll consider loans with statuses that don’t contain “Fully Paid” or “Charged Off” to still be open, so I’ll remove those from the dataset. I’ll also merge the “credit policy” columns with their matching status.

    出于實際目的,我將認為狀態不包含“已付清”或“已清還”的貸款仍處于打開狀態,因此我將從數據集中刪除這些貸款。 我還將合并“信貸政策”列及其匹配狀態。

    loan_status
    Charged Off 269320
    Fully Paid 1078739
    Name: loan_status, dtype: int64

    Now to create the output variable. I’ll start by checking the null counts of the variables involved.

    現在創建輸出變量。 我將從檢查所涉及變量的空計數開始。

    <class 'pandas.core.frame.DataFrame'>
    Int64Index: 1348059 entries, 0 to 2260697
    Data columns (total 7 columns):
    # Column Non-Null Count Dtype
    --- ------ -------------- -----
    0 term 1348059 non-null object
    1 installment 1348059 non-null float64
    2 total_rec_prncp 1348059 non-null float64
    3 total_rec_int 1348059 non-null float64
    4 total_rec_late_fee 1348059 non-null float64
    5 recoveries 1348059 non-null float64
    6 collection_recovery_fee 1348059 non-null float64
    dtypes: float64(6), object(1)
    memory usage: 82.3+ MB

    Every remaining row has each of these seven variables, but term’s data type is object, so that needs to be fixed first.

    其余的每一行都有這七個變量,但是term的數據類型是object ,因此需要首先固定。

    term
    36 months 1023181
    60 months 324878
    Name: term, dtype: int64

    Ah, so term is a categorical feature with two options. I’ll treat it as such when I use it as an input to the model, but to calculate the output variable I’ll create a numerical column from it.

    嗯, term是帶有兩個選項的分類功能。 當我將其用作模型的輸入時,將對其進行處理,但是要計算輸出變量,我將根據該值創建一個數字列。

    Also, I need to trim the whitespace from the beginning of those values — that’s no good.

    另外,我需要從這些值的開頭修剪空白-這是不好的。

    Now I can create the output variable.

    現在,我可以創建輸出變量。

    There is at least one odd outlier on the right in both categories. But also, many of the “fully paid” loans do not quite reach 1. One potential explanation is that when the last payment comes in, the system just flips loan_status to “Fully Paid” without adding the payment amount to the system itself, or perhaps simply multiplying installation by the term number leaves off a few cents in the actual total. If I were performing this analysis for Lending Club themselves, I’d ask them, but this is just a personal project. I’ll consider every loan marked “Fully Paid” to have fully recovered the expected return.

    在這兩類中,至少有一個奇異的異常值在右邊。 但是,許多“已付清”貸款還沒有達到1。一個可能的解釋是,當最后一次loan_status ,系統只是將loan_status翻轉為“已全額支付”,而未將支付金額添加到系統本身,或者也許僅將installation數乘以term數就可以使實際總數減少幾美分。 如果我是為Lending Club自己進行分析,我會問他們,但這只是一個個人項目。 我認為每筆標有“已付清”的貸款都已完全收回了預期收益。

    For that matter, I’ll cap my fraction_recovered values for charged off loans at 1.0 as well, since at least one value is above that for some reason.

    為此,我還將沖銷貸款的fraction_recovered值也限制為1.0,因為出于某種原因至少有一個值高于該值。

    For the sake of curiosity, I’ll plot the distribution of fraction recovered for charged-off loans.

    出于好奇,我將為沖銷貸款繪制回收分數的分布。

    Now that the output is formatted, it’s time to clean up the inputs. I’ll check the null counts of each variable.

    現在已經格式化了輸出,是時候清理輸入了。 我將檢查每個變量的空計數。

    <class 'pandas.core.frame.DataFrame'>
    Int64Index: 1348059 entries, 0 to 2260697
    Data columns (total 97 columns):
    # Column Non-Null Count Dtype
    --- ------ -------------- -----
    0 loan_amnt 1348059 non-null float64
    1 term 1348059 non-null object
    2 emp_length 1269514 non-null object
    3 home_ownership 1348059 non-null object
    4 annual_inc 1348055 non-null float64
    5 verification_status 1348059 non-null object
    6 issue_d 1348059 non-null object
    7 loan_status 1348059 non-null object
    8 purpose 1348059 non-null object
    9 dti 1347685 non-null float64
    10 delinq_2yrs 1348030 non-null float64
    11 earliest_cr_line 1348030 non-null object
    12 fico_range_low 1348059 non-null float64
    13 fico_range_high 1348059 non-null float64
    14 inq_last_6mths 1348029 non-null float64
    15 mths_since_last_delinq 668117 non-null float64
    16 mths_since_last_record 229415 non-null float64
    17 open_acc 1348030 non-null float64
    18 pub_rec 1348030 non-null float64
    19 revol_bal 1348059 non-null float64
    20 revol_util 1347162 non-null float64
    21 total_acc 1348030 non-null float64
    22 collections_12_mths_ex_med 1347914 non-null float64
    23 mths_since_last_major_derog 353750 non-null float64
    24 application_type 1348059 non-null object
    25 annual_inc_joint 25800 non-null float64
    26 dti_joint 25797 non-null float64
    27 verification_status_joint 25595 non-null object
    28 acc_now_delinq 1348030 non-null float64
    29 tot_coll_amt 1277783 non-null float64
    30 tot_cur_bal 1277783 non-null float64
    31 open_acc_6m 537597 non-null float64
    32 open_act_il 537598 non-null float64
    33 open_il_12m 537598 non-null float64
    34 open_il_24m 537598 non-null float64
    35 mths_since_rcnt_il 523382 non-null float64
    36 total_bal_il 537598 non-null float64
    37 il_util 465016 non-null float64
    38 open_rv_12m 537598 non-null float64
    39 open_rv_24m 537598 non-null float64
    40 max_bal_bc 537598 non-null float64
    41 all_util 537545 non-null float64
    42 total_rev_hi_lim 1277783 non-null float64
    43 inq_fi 537598 non-null float64
    44 total_cu_tl 537597 non-null float64
    45 inq_last_12m 537597 non-null float64
    46 acc_open_past_24mths 1298029 non-null float64
    47 avg_cur_bal 1277761 non-null float64
    48 bc_open_to_buy 1284167 non-null float64
    49 bc_util 1283398 non-null float64
    50 chargeoff_within_12_mths 1347914 non-null float64
    51 delinq_amnt 1348030 non-null float64
    52 mo_sin_old_il_acct 1239735 non-null float64
    53 mo_sin_old_rev_tl_op 1277782 non-null float64
    54 mo_sin_rcnt_rev_tl_op 1277782 non-null float64
    55 mo_sin_rcnt_tl 1277783 non-null float64
    56 mort_acc 1298029 non-null float64
    57 mths_since_recent_bc 1285089 non-null float64
    58 mths_since_recent_bc_dlq 319020 non-null float64
    59 mths_since_recent_inq 1171239 non-null float64
    60 mths_since_recent_revol_delinq 449962 non-null float64
    61 num_accts_ever_120_pd 1277783 non-null float64
    62 num_actv_bc_tl 1277783 non-null float64
    63 num_actv_rev_tl 1277783 non-null float64
    64 num_bc_sats 1289469 non-null float64
    65 num_bc_tl 1277783 non-null float64
    66 num_il_tl 1277783 non-null float64
    67 num_op_rev_tl 1277783 non-null float64
    68 num_rev_accts 1277782 non-null float64
    69 num_rev_tl_bal_gt_0 1277783 non-null float64
    70 num_sats 1289469 non-null float64
    71 num_tl_120dpd_2m 1227909 non-null float64
    72 num_tl_30dpd 1277783 non-null float64
    73 num_tl_90g_dpd_24m 1277783 non-null float64
    74 num_tl_op_past_12m 1277783 non-null float64
    75 pct_tl_nvr_dlq 1277629 non-null float64
    76 percent_bc_gt_75 1283755 non-null float64
    77 pub_rec_bankruptcies 1346694 non-null float64
    78 tax_liens 1347954 non-null float64
    79 tot_hi_cred_lim 1277783 non-null float64
    80 total_bal_ex_mort 1298029 non-null float64
    81 total_bc_limit 1298029 non-null float64
    82 total_il_high_credit_limit 1277783 non-null float64
    83 revol_bal_joint 18629 non-null float64
    84 sec_app_fico_range_low 18630 non-null float64
    85 sec_app_fico_range_high 18630 non-null float64
    86 sec_app_earliest_cr_line 18630 non-null object
    87 sec_app_inq_last_6mths 18630 non-null float64
    88 sec_app_mort_acc 18630 non-null float64
    89 sec_app_open_acc 18630 non-null float64
    90 sec_app_revol_util 18302 non-null float64
    91 sec_app_open_act_il 18630 non-null float64
    92 sec_app_num_rev_accts 18630 non-null float64
    93 sec_app_chargeoff_within_12_mths 18630 non-null float64
    94 sec_app_collections_12_mths_ex_med 18630 non-null float64
    95 sec_app_mths_since_last_major_derog 6645 non-null float64
    96 fraction_recovered 1348059 non-null float64
    dtypes: float64(86), object(11)
    memory usage: 1007.9+ MB

    Remaining columns with lots of null values seem to fall into three categories:

    剩下的帶有很多空值的列似乎可以分為三類:

  • Derogatory/delinquency metrics (where null means the borrower doesn’t have any such marks). I’ll also add mths_since_recent_inq to this list, since its non-null count is below what seems to be the threshold for complete data, which is around 1,277,783. I’ll assume a null value here means no recent inquiries.

    貶損/拖欠行為指標 (其中null表示借款人沒有任何此類標記)。 我還將在該列表中添加mths_since_recent_inq ,因為其非空計數低于似乎是完整數據的閾值,約為1,277,783。 我假設這里為空值,意味著沒有最近的查詢。

  • Metrics that only apply to joint applications (where null means it was a single application).

    僅適用于聯合應用程序的度量標準 (其中null表示它是單個應用程序)。

  • An inexplicable series of 14 credit history–related columns that only have around 537,000 entries. Are these newer metrics?

    包含14個與信用記錄相關的列的莫名其妙的系列 ,只有大約537,000個條目。 這些是新指標嗎?

  • I’ll first look at those more confusing columns to find out whether or not they’re a newer set of metrics. That’ll require converting issue_d to date format first.

    我將首先查看那些更令人困惑的列,以了解它們是否是一組較新的指標。 這將需要首先將issue_d轉換為日期格式。

    count 464325
    min 2015-12-01 00:00:00
    max 2018-12-01 00:00:00
    Name: issue_d, dtype: objectcount 557708
    min 2015-12-01 00:00:00
    max 2018-12-01 00:00:00
    Name: issue_d, dtype: object

    It appears that these are indeed newer metrics, their use only beginning in December 2015, but even after that point usage is spotty. I’m curious to see if these additional metrics would make a model more accurate, though, so once I’m done cleaning the data I’ll copy the rows with these new metrics into a new dataset and create another model using the new metrics.

    看來這些確實是較新的指標,它們的使用僅在2015年12月開始,但即使在此之后,使用情況仍然參差不齊。 我很好奇這些附加指標是否會使模型更準確,因此,一旦清理完數據,我會將具有這些新指標的行復制到新數據集中,并使用新指標創建另一個模型。

    As for the derogatory/delinquency metrics, taking a cue from Michael Wurm, I’m going to take the inverse of all the “months since recent/last” fields, which will turn each into a proxy for the frequency of the event and also let me set all the null values (when an event has never happened) to 0. For the “months since oldest” fields, I’ll just set the null values to 0 and leave the rest untouched.

    至于貶損/過失指標, 從邁克爾·烏爾姆 ( Michael Wurm)那里得到提示,我將采用所有“自最近/最近以來的月份”字段的倒數,這將使每個字段都代表事件的發生頻率,以及讓我將所有空值(如果從未發生過事件)都設置為0。對于“從最舊的月份開始”字段,我將空值設置為0,其余的保持不變。

    Now to look closer at joint loans.

    現在來看一下聯合貸款。

    application_type
    Individual 1322259
    Joint App 25800
    Name: application_type, dtype: int64<class 'pandas.core.frame.DataFrame'>
    Int64Index: 25800 entries, 2 to 2260663
    Data columns (total 16 columns):
    # Column Non-Null Count Dtype
    --- ------ -------------- -----
    0 annual_inc_joint 25800 non-null float64
    1 dti_joint 25797 non-null float64
    2 verification_status_joint 25595 non-null object
    3 revol_bal_joint 18629 non-null float64
    4 sec_app_fico_range_low 18630 non-null float64
    5 sec_app_fico_range_high 18630 non-null float64
    6 sec_app_earliest_cr_line 18630 non-null object
    7 sec_app_inq_last_6mths 18630 non-null float64
    8 sec_app_mort_acc 18630 non-null float64
    9 sec_app_open_acc 18630 non-null float64
    10 sec_app_revol_util 18302 non-null float64
    11 sec_app_open_act_il 18630 non-null float64
    12 sec_app_num_rev_accts 18630 non-null float64
    13 sec_app_chargeoff_within_12_mths 18630 non-null float64
    14 sec_app_collections_12_mths_ex_med 18630 non-null float64
    15 sec_app_inv_mths_since_last_major_derog 25800 non-null float64
    dtypes: float64(14), object(2)
    memory usage: 3.3+ MB

    It seems there may be a case of newer metrics for joint applications as well. I’ll investigate.

    似乎也可能有一些針對聯合應用的更新指標。 我會調查

    count 18301
    min 2017-03-01 00:00:00
    max 2018-12-01 00:00:00
    Name: issue_d, dtype: objectcount 18629
    min 2017-03-01 00:00:00
    max 2018-12-01 00:00:00
    Name: issue_d, dtype: object

    Newer than the previous set of new metrics, even — these didn’t start getting used till March 2017. Now I wonder when joint loans were first introduced.

    甚至比以前的一組新指標都更新-這些指標直到2017年3月才開始使用。現在我想知道何時首次引入聯合貸款。

    count 25800
    min 2015-10-01 00:00:00
    max 2018-12-01 00:00:00
    Name: issue_d, dtype: object

    2015. I think I’ll save the newer joint metrics for perhaps a third model, but I believe I can include annual_inc_joint, dti_joint, and verification_status_joint in the main model—I’ll just binary-encode application_type, and for individual applications I’ll set annual_inc_joint, dti_joint, and verification_status_joint equal to their non-joint counterparts.

    2015年,我想我會保存新的聯合度量也許是第三種模式,但我相信我可以包括annual_inc_joint , dti_joint和verification_status_joint中的主力機型-我只是二進制編碼application_type ,和應用程序的I”將annual_inc_joint , dti_joint和verification_status_joint設置為它們的非聯合副本。

    <class 'pandas.core.frame.DataFrame'>
    Int64Index: 1348059 entries, 0 to 2260697
    Data columns (total 97 columns):
    # Column Non-Null Count Dtype
    --- ------ -------------- -----
    0 loan_amnt 1348059 non-null float64
    1 term 1348059 non-null object
    2 emp_length 1269514 non-null object
    3 home_ownership 1348059 non-null object
    4 annual_inc 1348055 non-null float64
    5 verification_status 1348059 non-null object
    6 issue_d 1348059 non-null datetime64[ns]
    7 loan_status 1348059 non-null object
    8 purpose 1348059 non-null object
    9 dti 1347685 non-null float64
    10 delinq_2yrs 1348030 non-null float64
    11 earliest_cr_line 1348030 non-null object
    12 fico_range_low 1348059 non-null float64
    13 fico_range_high 1348059 non-null float64
    14 inq_last_6mths 1348029 non-null float64
    15 inv_mths_since_last_delinq 1348059 non-null float64
    16 inv_mths_since_last_record 1348059 non-null float64
    17 open_acc 1348030 non-null float64
    18 pub_rec 1348030 non-null float64
    19 revol_bal 1348059 non-null float64
    20 revol_util 1347162 non-null float64
    21 total_acc 1348030 non-null float64
    22 collections_12_mths_ex_med 1347914 non-null float64
    23 inv_mths_since_last_major_derog 1348059 non-null float64
    24 application_type 1348059 non-null object
    25 annual_inc_joint 1348055 non-null float64
    26 dti_joint 1348056 non-null float64
    27 verification_status_joint 1347854 non-null object
    28 acc_now_delinq 1348030 non-null float64
    29 tot_coll_amt 1277783 non-null float64
    30 tot_cur_bal 1277783 non-null float64
    31 open_acc_6m 537597 non-null float64
    32 open_act_il 537598 non-null float64
    33 open_il_12m 537598 non-null float64
    34 open_il_24m 537598 non-null float64
    35 inv_mths_since_rcnt_il 1348059 non-null float64
    36 total_bal_il 537598 non-null float64
    37 il_util 465016 non-null float64
    38 open_rv_12m 537598 non-null float64
    39 open_rv_24m 537598 non-null float64
    40 max_bal_bc 537598 non-null float64
    41 all_util 537545 non-null float64
    42 total_rev_hi_lim 1277783 non-null float64
    43 inq_fi 537598 non-null float64
    44 total_cu_tl 537597 non-null float64
    45 inq_last_12m 537597 non-null float64
    46 acc_open_past_24mths 1298029 non-null float64
    47 avg_cur_bal 1277761 non-null float64
    48 bc_open_to_buy 1284167 non-null float64
    49 bc_util 1283398 non-null float64
    50 chargeoff_within_12_mths 1347914 non-null float64
    51 delinq_amnt 1348030 non-null float64
    52 mo_sin_old_il_acct 1239735 non-null float64
    53 mo_sin_old_rev_tl_op 1277782 non-null float64
    54 inv_mo_sin_rcnt_rev_tl_op 1348059 non-null float64
    55 inv_mo_sin_rcnt_tl 1348059 non-null float64
    56 mort_acc 1298029 non-null float64
    57 inv_mths_since_recent_bc 1348059 non-null float64
    58 inv_mths_since_recent_bc_dlq 1348059 non-null float64
    59 inv_mths_since_recent_inq 1348059 non-null float64
    60 inv_mths_since_recent_revol_delinq 1348059 non-null float64
    61 num_accts_ever_120_pd 1277783 non-null float64
    62 num_actv_bc_tl 1277783 non-null float64
    63 num_actv_rev_tl 1277783 non-null float64
    64 num_bc_sats 1289469 non-null float64
    65 num_bc_tl 1277783 non-null float64
    66 num_il_tl 1277783 non-null float64
    67 num_op_rev_tl 1277783 non-null float64
    68 num_rev_accts 1277782 non-null float64
    69 num_rev_tl_bal_gt_0 1277783 non-null float64
    70 num_sats 1289469 non-null float64
    71 num_tl_120dpd_2m 1227909 non-null float64
    72 num_tl_30dpd 1277783 non-null float64
    73 num_tl_90g_dpd_24m 1277783 non-null float64
    74 num_tl_op_past_12m 1277783 non-null float64
    75 pct_tl_nvr_dlq 1277629 non-null float64
    76 percent_bc_gt_75 1283755 non-null float64
    77 pub_rec_bankruptcies 1346694 non-null float64
    78 tax_liens 1347954 non-null float64
    79 tot_hi_cred_lim 1277783 non-null float64
    80 total_bal_ex_mort 1298029 non-null float64
    81 total_bc_limit 1298029 non-null float64
    82 total_il_high_credit_limit 1277783 non-null float64
    83 revol_bal_joint 18629 non-null float64
    84 sec_app_fico_range_low 18630 non-null float64
    85 sec_app_fico_range_high 18630 non-null float64
    86 sec_app_earliest_cr_line 18630 non-null object
    87 sec_app_inq_last_6mths 18630 non-null float64
    88 sec_app_mort_acc 18630 non-null float64
    89 sec_app_open_acc 18630 non-null float64
    90 sec_app_revol_util 18302 non-null float64
    91 sec_app_open_act_il 18630 non-null float64
    92 sec_app_num_rev_accts 18630 non-null float64
    93 sec_app_chargeoff_within_12_mths 18630 non-null float64
    94 sec_app_collections_12_mths_ex_med 18630 non-null float64
    95 sec_app_inv_mths_since_last_major_derog 1348059 non-null float64
    96 fraction_recovered 1348059 non-null float64
    dtypes: datetime64[ns](1), float64(86), object(10)
    memory usage: 1007.9+ MB

    Now the only remaining steps should be removing rows with null values (in columns that aren’t new metrics) and encoding categorical features.

    現在,剩下的唯一步驟應該是刪除具有空值的行(在不是新指標的列中)并編碼分類特征。

    I’m removing rows with null values in those columns because that should still leave the vast majority of rows intact, over 1 million, which is still plenty of data. But I guess I should make sure before I overwrite loans.

    我要刪除這些列中具有空值的行,因為那仍應保持絕大多數行(超過100萬行)的完好無損,而這仍然是大量數據。 但是我想我應該確保在覆蓋loans之前。

    (1110171, 97)

    Yes, still 1,110,171. That’ll do.

    是的,仍然是1,110,171。 會的

    Then actually I’ll tackle earliest_cr_line and its joint counterpart first before looking at the categorical features.

    然后,實際上,在查看分類特征之前,我將先解決earliest_cr_line及其聯合副本。

    1110171 rows × 2 columns

    I should convert that to the age of the credit line at the time of application (or the time of loan issuing, more precisely).

    我應該將其轉換為申請時(或更確切地說,發放貸款時)的信貸額度。

    0 148
    1 192
    2 184
    4 210
    5 338
    ...
    2260688 147
    2260690 175
    2260691 64
    2260692 230
    2260697 207
    Length: 1110171, dtype: int64

    Now a look at those categorical features.

    現在看一下這些分類功能。

    term
    36 months 831601
    60 months 278570
    Name: term, dtype: int64emp_length
    1 year 76868
    10+ years 392883
    2 years 106124
    3 years 93784
    4 years 69031
    5 years 72421
    6 years 54240
    7 years 52229
    8 years 53826
    9 years 45210
    < 1 year 93555
    Name: emp_length, dtype: int64home_ownership
    ANY 250
    MORTGAGE 559035
    NONE 39
    OTHER 40
    OWN 114577
    RENT 436230
    Name: home_ownership, dtype: int64verification_status
    Not Verified 335350
    Source Verified 463153
    Verified 311668
    Name: verification_status, dtype: int64purpose
    car 10754
    credit_card 245942
    debt_consolidation 653222
    educational 1
    home_improvement 71089
    house 5720
    major_purchase 22901
    medical 12302
    moving 7464
    other 60986
    renewable_energy 691
    small_business 11137
    vacation 7169
    wedding 793
    Name: purpose, dtype: int64verification_status_joint
    Not Verified 341073
    Source Verified 461941
    Verified 307157
    Name: verification_status_joint, dtype: int64

    First, in researching income verification, I learned that LendingClub only tries to verify income on a subset of loan applications based on the content of the application, so this feature is a source of target leakage. I’ll remove the two offending columns (and a couple more I don’t need anymore).

    首先,在研究收入驗證時,我了解到LendingClub僅嘗試根據應用程序的內容來驗證一部分貸款應用程序的收入 ,因此此功能是目標泄漏的根源。 我將刪除兩個有問題的列(還有一些我不再需要的列)。

    Once I create my pipeline, I’ll binary encode term, one-hot encode home_ownership and purpose, and since emp_length is an ordinal variable, I’ll convert it to the integers 0–10.

    一旦創建我的管道,我會二進制編碼term ,獨熱編碼home_ownership和purpose ,而且由于emp_length是一個序變量,我將其轉換為整數0-10。

    That should cover all the cleaning necessary for the first model’s data. I’ll save the columns that’ll be used in the first model to a new DataFrame, and while I’m at it, I’ll start formatting the DataFrames for the two additional models adding the two sets of new metrics.

    這應該包括對第一個模型的數據進行的所有必要清潔。 我將在第一個模型中使用的列保存到新的DataFrame中,當我使用它時,我將開始為兩個附加模型設置DataFrames格式,并添加兩組新指標。

    <class 'pandas.core.frame.DataFrame'>
    Int64Index: 1110171 entries, 0 to 2260697
    Data columns (total 80 columns):
    # Column Non-Null Count Dtype
    --- ------ -------------- -----
    0 loan_amnt 1110171 non-null float64
    1 term 1110171 non-null object
    2 emp_length 1110171 non-null object
    3 home_ownership 1110171 non-null object
    4 annual_inc 1110171 non-null float64
    5 purpose 1110171 non-null object
    6 dti 1110171 non-null float64
    7 delinq_2yrs 1110171 non-null float64
    8 cr_hist_age_mths 1110171 non-null int64
    9 fico_range_low 1110171 non-null float64
    10 fico_range_high 1110171 non-null float64
    11 inq_last_6mths 1110171 non-null float64
    12 inv_mths_since_last_delinq 1110171 non-null float64
    13 inv_mths_since_last_record 1110171 non-null float64
    14 open_acc 1110171 non-null float64
    15 pub_rec 1110171 non-null float64
    16 revol_bal 1110171 non-null float64
    17 revol_util 1110171 non-null float64
    18 total_acc 1110171 non-null float64
    19 collections_12_mths_ex_med 1110171 non-null float64
    20 inv_mths_since_last_major_derog 1110171 non-null float64
    21 application_type 1110171 non-null object
    22 annual_inc_joint 1110171 non-null float64
    23 dti_joint 1110171 non-null float64
    24 acc_now_delinq 1110171 non-null float64
    25 tot_coll_amt 1110171 non-null float64
    26 tot_cur_bal 1110171 non-null float64
    27 open_acc_6m 459541 non-null float64
    28 open_act_il 459541 non-null float64
    29 open_il_12m 459541 non-null float64
    30 open_il_24m 459541 non-null float64
    31 inv_mths_since_rcnt_il 1110171 non-null float64
    32 total_bal_il 459541 non-null float64
    33 il_util 408722 non-null float64
    34 open_rv_12m 459541 non-null float64
    35 open_rv_24m 459541 non-null float64
    36 max_bal_bc 459541 non-null float64
    37 all_util 459541 non-null float64
    38 total_rev_hi_lim 1110171 non-null float64
    39 inq_fi 459541 non-null float64
    40 total_cu_tl 459541 non-null float64
    41 inq_last_12m 459541 non-null float64
    42 acc_open_past_24mths 1110171 non-null float64
    43 avg_cur_bal 1110171 non-null float64
    44 bc_open_to_buy 1110171 non-null float64
    45 bc_util 1110171 non-null float64
    46 chargeoff_within_12_mths 1110171 non-null float64
    47 delinq_amnt 1110171 non-null float64
    48 mo_sin_old_il_acct 1110171 non-null float64
    49 mo_sin_old_rev_tl_op 1110171 non-null float64
    50 inv_mo_sin_rcnt_rev_tl_op 1110171 non-null float64
    51 inv_mo_sin_rcnt_tl 1110171 non-null float64
    52 mort_acc 1110171 non-null float64
    53 inv_mths_since_recent_bc 1110171 non-null float64
    54 inv_mths_since_recent_bc_dlq 1110171 non-null float64
    55 inv_mths_since_recent_inq 1110171 non-null float64
    56 inv_mths_since_recent_revol_delinq 1110171 non-null float64
    57 num_accts_ever_120_pd 1110171 non-null float64
    58 num_actv_bc_tl 1110171 non-null float64
    59 num_actv_rev_tl 1110171 non-null float64
    60 num_bc_sats 1110171 non-null float64
    61 num_bc_tl 1110171 non-null float64
    62 num_il_tl 1110171 non-null float64
    63 num_op_rev_tl 1110171 non-null float64
    64 num_rev_accts 1110171 non-null float64
    65 num_rev_tl_bal_gt_0 1110171 non-null float64
    66 num_sats 1110171 non-null float64
    67 num_tl_120dpd_2m 1110171 non-null float64
    68 num_tl_30dpd 1110171 non-null float64
    69 num_tl_90g_dpd_24m 1110171 non-null float64
    70 num_tl_op_past_12m 1110171 non-null float64
    71 pct_tl_nvr_dlq 1110171 non-null float64
    72 percent_bc_gt_75 1110171 non-null float64
    73 pub_rec_bankruptcies 1110171 non-null float64
    74 tax_liens 1110171 non-null float64
    75 tot_hi_cred_lim 1110171 non-null float64
    76 total_bal_ex_mort 1110171 non-null float64
    77 total_bc_limit 1110171 non-null float64
    78 total_il_high_credit_limit 1110171 non-null float64
    79 fraction_recovered 1110171 non-null float64
    dtypes: float64(74), int64(1), object(5)
    memory usage: 686.1+ MB

    Before I drop a bunch of rows with nulls from loans_2, I’m concerned about il_util, as it’s missing values in about 50,000 more rows than the rest of the new metric columns. Why would that be?

    在我從loans_2刪除一堆行中包含空值的行loans_2 ,我擔心il_util ,因為它比新指標列中的剩余行缺少50,000多行值。 為什么會這樣呢?

    count 408722.000000
    mean 71.832894
    std 22.311439
    min 0.000000
    25% 59.000000
    50% 75.000000
    75% 87.000000
    max 464.000000
    Name: il_util, dtype: float64

    Peeking back up to the data dictionary, il_util is the “ratio of total current balance to high credit/credit limit on all install acct”. The relevant balance (total_bal_il) and credit limit (total_il_high_credit_limit) metrics appear to already be in the data, so perhaps this utilization metric doesn’t contain any new information. I’ll compare il_util (where it’s present) to the ratio of the other two variables.

    回顧數據字典, il_util是“當前總余額與所有安裝帳戶上的最高信用/信用額度之比”。 相關的余額( total_bal_il )和信用額度( total_il_high_credit_limit )度量似乎已經存在于數據中,因此該利用率度量可能不包含任何新信息。 我將把il_util (如果有的話)與其他兩個變量的比率進行比較。

    408722 rows × 2 columnscount 408722
    unique 2
    top True
    freq 307589
    dtype: objectcount 101133.000000
    mean 14.638684
    std 16.409913
    min 1.000000
    25% 3.000000
    50% 10.000000
    75% 21.000000
    max 1108.000000
    Name: compute_diff, dtype: float64

    That’s weird. il_util is equal to the computed ratio three-quarters of the time, but when it’s off, the median difference is 10 points off. Perhaps there’s new information there sometimes after all. Maybe whatever credit bureau is reporting the utilization rate uses a different formula than just a simple ratio? Again, something I could ask if I were performing this analysis for a client, but that’s not the case. I’ll assume that this variable is still valuable, and where il_util is null I’ll impute the value to make it equal to the ratio of total_bal_il to total_il_high_credit_limit (or 0 if the limit is 0). And I’ll add one more boolean field to mark the imputed entries.

    那真是怪了。 il_util等于四分之三的時間所計算的比率,但是當它關??閉時,中位數差異減少了10點。 也許有時畢竟那里有新信息。 也許任何征信機構都在報告利用率不只是簡單比率而是使用不同的公式? 再次,我可能會問我是否正在為客戶執行此分析,但是事實并非如此。 我假設該變量仍然有價值,并且在il_util為null的情況下,我將il_util該值使其等于total_bal_il與total_il_high_credit_limit的比率(如果限制為0,則為0)。 我將再添加一個布爾字段來標記估算的條目。

    Also, that 1,108 is a doozy of an outlier, but I think I’ll just leave it be, as it appears that outliers aren’t too big a deal if the neural network architecture is sufficiently deep.

    另外,這1,108個數字是一個離群值的雜項,但我想我會保留它,因為如果神經網絡架構足夠深, 離群值似乎并不太重要 。

    <class 'pandas.core.frame.DataFrame'>
    Int64Index: 1110171 entries, 0 to 2260697
    Data columns (total 81 columns):
    # Column Non-Null Count Dtype
    --- ------ -------------- -----
    0 loan_amnt 1110171 non-null float64
    1 term 1110171 non-null object
    2 emp_length 1110171 non-null object
    3 home_ownership 1110171 non-null object
    4 annual_inc 1110171 non-null float64
    5 purpose 1110171 non-null object
    6 dti 1110171 non-null float64
    7 delinq_2yrs 1110171 non-null float64
    8 cr_hist_age_mths 1110171 non-null int64
    9 fico_range_low 1110171 non-null float64
    10 fico_range_high 1110171 non-null float64
    11 inq_last_6mths 1110171 non-null float64
    12 inv_mths_since_last_delinq 1110171 non-null float64
    13 inv_mths_since_last_record 1110171 non-null float64
    14 open_acc 1110171 non-null float64
    15 pub_rec 1110171 non-null float64
    16 revol_bal 1110171 non-null float64
    17 revol_util 1110171 non-null float64
    18 total_acc 1110171 non-null float64
    19 collections_12_mths_ex_med 1110171 non-null float64
    20 inv_mths_since_last_major_derog 1110171 non-null float64
    21 application_type 1110171 non-null object
    22 annual_inc_joint 1110171 non-null float64
    23 dti_joint 1110171 non-null float64
    24 acc_now_delinq 1110171 non-null float64
    25 tot_coll_amt 1110171 non-null float64
    26 tot_cur_bal 1110171 non-null float64
    27 open_acc_6m 459541 non-null float64
    28 open_act_il 459541 non-null float64
    29 open_il_12m 459541 non-null float64
    30 open_il_24m 459541 non-null float64
    31 inv_mths_since_rcnt_il 1110171 non-null float64
    32 total_bal_il 459541 non-null float64
    33 il_util 459541 non-null float64
    34 open_rv_12m 459541 non-null float64
    35 open_rv_24m 459541 non-null float64
    36 max_bal_bc 459541 non-null float64
    37 all_util 459541 non-null float64
    38 total_rev_hi_lim 1110171 non-null float64
    39 inq_fi 459541 non-null float64
    40 total_cu_tl 459541 non-null float64
    41 inq_last_12m 459541 non-null float64
    42 acc_open_past_24mths 1110171 non-null float64
    43 avg_cur_bal 1110171 non-null float64
    44 bc_open_to_buy 1110171 non-null float64
    45 bc_util 1110171 non-null float64
    46 chargeoff_within_12_mths 1110171 non-null float64
    47 delinq_amnt 1110171 non-null float64
    48 mo_sin_old_il_acct 1110171 non-null float64
    49 mo_sin_old_rev_tl_op 1110171 non-null float64
    50 inv_mo_sin_rcnt_rev_tl_op 1110171 non-null float64
    51 inv_mo_sin_rcnt_tl 1110171 non-null float64
    52 mort_acc 1110171 non-null float64
    53 inv_mths_since_recent_bc 1110171 non-null float64
    54 inv_mths_since_recent_bc_dlq 1110171 non-null float64
    55 inv_mths_since_recent_inq 1110171 non-null float64
    56 inv_mths_since_recent_revol_delinq 1110171 non-null float64
    57 num_accts_ever_120_pd 1110171 non-null float64
    58 num_actv_bc_tl 1110171 non-null float64
    59 num_actv_rev_tl 1110171 non-null float64
    60 num_bc_sats 1110171 non-null float64
    61 num_bc_tl 1110171 non-null float64
    62 num_il_tl 1110171 non-null float64
    63 num_op_rev_tl 1110171 non-null float64
    64 num_rev_accts 1110171 non-null float64
    65 num_rev_tl_bal_gt_0 1110171 non-null float64
    66 num_sats 1110171 non-null float64
    67 num_tl_120dpd_2m 1110171 non-null float64
    68 num_tl_30dpd 1110171 non-null float64
    69 num_tl_90g_dpd_24m 1110171 non-null float64
    70 num_tl_op_past_12m 1110171 non-null float64
    71 pct_tl_nvr_dlq 1110171 non-null float64
    72 percent_bc_gt_75 1110171 non-null float64
    73 pub_rec_bankruptcies 1110171 non-null float64
    74 tax_liens 1110171 non-null float64
    75 tot_hi_cred_lim 1110171 non-null float64
    76 total_bal_ex_mort 1110171 non-null float64
    77 total_bc_limit 1110171 non-null float64
    78 total_il_high_credit_limit 1110171 non-null float64
    79 fraction_recovered 1110171 non-null float64
    80 il_util_imputed 1110171 non-null bool
    dtypes: bool(1), float64(74), int64(1), object(5)
    memory usage: 687.1+ MB

    Good. Ready to drop rows with nulls in loans_2 and move on to the DataFrame for the model that adds the new metrics for joint applications.

    好。 準備刪除loans_2具有空值的行,然后轉到該模型的DataFrame,該模型為聯合應用程序添加了新指標。

    <class 'pandas.core.frame.DataFrame'>
    Int64Index: 14453 entries, 421222 to 2157147
    Data columns (total 94 columns):
    # Column Non-Null Count Dtype
    --- ------ -------------- -----
    0 loan_amnt 14453 non-null float64
    1 term 14453 non-null object
    2 emp_length 14453 non-null object
    3 home_ownership 14453 non-null object
    4 annual_inc 14453 non-null float64
    5 purpose 14453 non-null object
    6 dti 14453 non-null float64
    7 delinq_2yrs 14453 non-null float64
    8 cr_hist_age_mths 14453 non-null int64
    9 fico_range_low 14453 non-null float64
    10 fico_range_high 14453 non-null float64
    11 inq_last_6mths 14453 non-null float64
    12 inv_mths_since_last_delinq 14453 non-null float64
    13 inv_mths_since_last_record 14453 non-null float64
    14 open_acc 14453 non-null float64
    15 pub_rec 14453 non-null float64
    16 revol_bal 14453 non-null float64
    17 revol_util 14453 non-null float64
    18 total_acc 14453 non-null float64
    19 collections_12_mths_ex_med 14453 non-null float64
    20 inv_mths_since_last_major_derog 14453 non-null float64
    21 application_type 14453 non-null object
    22 annual_inc_joint 14453 non-null float64
    23 dti_joint 14453 non-null float64
    24 acc_now_delinq 14453 non-null float64
    25 tot_coll_amt 14453 non-null float64
    26 tot_cur_bal 14453 non-null float64
    27 open_acc_6m 14453 non-null float64
    28 open_act_il 14453 non-null float64
    29 open_il_12m 14453 non-null float64
    30 open_il_24m 14453 non-null float64
    31 inv_mths_since_rcnt_il 14453 non-null float64
    32 total_bal_il 14453 non-null float64
    33 il_util 14453 non-null float64
    34 open_rv_12m 14453 non-null float64
    35 open_rv_24m 14453 non-null float64
    36 max_bal_bc 14453 non-null float64
    37 all_util 14453 non-null float64
    38 total_rev_hi_lim 14453 non-null float64
    39 inq_fi 14453 non-null float64
    40 total_cu_tl 14453 non-null float64
    41 inq_last_12m 14453 non-null float64
    42 acc_open_past_24mths 14453 non-null float64
    43 avg_cur_bal 14453 non-null float64
    44 bc_open_to_buy 14453 non-null float64
    45 bc_util 14453 non-null float64
    46 chargeoff_within_12_mths 14453 non-null float64
    47 delinq_amnt 14453 non-null float64
    48 mo_sin_old_il_acct 14453 non-null float64
    49 mo_sin_old_rev_tl_op 14453 non-null float64
    50 inv_mo_sin_rcnt_rev_tl_op 14453 non-null float64
    51 inv_mo_sin_rcnt_tl 14453 non-null float64
    52 mort_acc 14453 non-null float64
    53 inv_mths_since_recent_bc 14453 non-null float64
    54 inv_mths_since_recent_bc_dlq 14453 non-null float64
    55 inv_mths_since_recent_inq 14453 non-null float64
    56 inv_mths_since_recent_revol_delinq 14453 non-null float64
    57 num_accts_ever_120_pd 14453 non-null float64
    58 num_actv_bc_tl 14453 non-null float64
    59 num_actv_rev_tl 14453 non-null float64
    60 num_bc_sats 14453 non-null float64
    61 num_bc_tl 14453 non-null float64
    62 num_il_tl 14453 non-null float64
    63 num_op_rev_tl 14453 non-null float64
    64 num_rev_accts 14453 non-null float64
    65 num_rev_tl_bal_gt_0 14453 non-null float64
    66 num_sats 14453 non-null float64
    67 num_tl_120dpd_2m 14453 non-null float64
    68 num_tl_30dpd 14453 non-null float64
    69 num_tl_90g_dpd_24m 14453 non-null float64
    70 num_tl_op_past_12m 14453 non-null float64
    71 pct_tl_nvr_dlq 14453 non-null float64
    72 percent_bc_gt_75 14453 non-null float64
    73 pub_rec_bankruptcies 14453 non-null float64
    74 tax_liens 14453 non-null float64
    75 tot_hi_cred_lim 14453 non-null float64
    76 total_bal_ex_mort 14453 non-null float64
    77 total_bc_limit 14453 non-null float64
    78 total_il_high_credit_limit 14453 non-null float64
    79 revol_bal_joint 14453 non-null float64
    80 sec_app_fico_range_low 14453 non-null float64
    81 sec_app_fico_range_high 14453 non-null float64
    82 sec_app_cr_hist_age_mths 14453 non-null Int64
    83 sec_app_inq_last_6mths 14453 non-null float64
    84 sec_app_mort_acc 14453 non-null float64
    85 sec_app_open_acc 14453 non-null float64
    86 sec_app_revol_util 14453 non-null float64
    87 sec_app_open_act_il 14453 non-null float64
    88 sec_app_num_rev_accts 14453 non-null float64
    89 sec_app_chargeoff_within_12_mths 14453 non-null float64
    90 sec_app_collections_12_mths_ex_med 14453 non-null float64
    91 sec_app_inv_mths_since_last_major_derog 14453 non-null float64
    92 fraction_recovered 14453 non-null float64
    93 il_util_imputed 14453 non-null bool
    dtypes: Int64(1), bool(1), float64(86), int64(1), object(5)
    memory usage: 10.4+ MB

    Phew, the data’s all clean now! Time for the fun part.

    ew,數據現在全部干凈了! 時間是有趣的部分。

    建立神經網絡 (Building the neural networks)

    After a good deal of trial and error, I found that a network architecture with three hidden layers, each followed by a dropout layer of rate 0.3, was as good as I could find. I used ReLU activation in those hidden layers, and adam optimization and a loss metric of mean squared error in the model as a whole. I tried using mean absolute error at first, but then I found that the resulting model would essentially always guess either 1 or 0 for the output, and the majority of the dataset’s output is 1. Therefore, larger errors needed to be penalized to a greater degree, which is what mean squared error is good at.

    經過大量的反復試驗,我發現一個網絡體系結構具有三個隱藏層,每個層次后面緊跟著一個速率為0.3的退出層,這是我所能找到的。 我在那些隱藏層中使用了ReLU激活,在整個模型中使用了adam優化和均方誤差的損失度量。 我最初嘗試使用平均絕對誤差,但隨后發現結果模型實際上總是會為輸出猜測1或0,并且數據集的大部分輸出為1。因此,較大的誤差需要受到較大的懲罰。度,即平方誤差最擅長的。

    The dataset being so large, I had great results increasing the batch size for the first couple models.

    數據集是如此之大,對于增加前幾個模型的批處理量,我取得了很好的結果。

    Model 1:
    Epoch 1/100
    6939/6939 [==============================] - 17s 3ms/step - loss: 0.0738 - val_loss: 0.0601
    Epoch 2/100
    6939/6939 [==============================] - 17s 2ms/step - loss: 0.0600 - val_loss: 0.0597
    Epoch 3/100
    6939/6939 [==============================] - 18s 3ms/step - loss: 0.0595 - val_loss: 0.0592
    Epoch 4/100
    6939/6939 [==============================] - 17s 2ms/step - loss: 0.0594 - val_loss: 0.0589
    Epoch 5/100
    6939/6939 [==============================] - 18s 3ms/step - loss: 0.0593 - val_loss: 0.0597
    Epoch 6/100
    6939/6939 [==============================] - 17s 3ms/step - loss: 0.0593 - val_loss: 0.0591
    Epoch 7/100
    6939/6939 [==============================] - 17s 2ms/step - loss: 0.0592 - val_loss: 0.0591
    Epoch 8/100
    6939/6939 [==============================] - 17s 3ms/step - loss: 0.0591 - val_loss: 0.0597
    Epoch 9/100
    6939/6939 [==============================] - 17s 3ms/step - loss: 0.0591 - val_loss: 0.0588
    Epoch 10/100
    6939/6939 [==============================] - 18s 3ms/step - loss: 0.0591 - val_loss: 0.0589
    Epoch 11/100
    6939/6939 [==============================] - 18s 3ms/step - loss: 0.0591 - val_loss: 0.0585
    Epoch 12/100
    6939/6939 [==============================] - 17s 3ms/step - loss: 0.0590 - val_loss: 0.0586
    Epoch 13/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0590 - val_loss: 0.0587
    Epoch 14/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0590 - val_loss: 0.0591
    Epoch 15/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0590 - val_loss: 0.0588
    Epoch 16/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0590 - val_loss: 0.0589
    Epoch 17/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0590 - val_loss: 0.0584
    Epoch 18/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0590 - val_loss: 0.0591
    Epoch 19/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0590 - val_loss: 0.0586
    Epoch 20/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0589 - val_loss: 0.0587
    Epoch 21/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0590 - val_loss: 0.0585
    Epoch 22/100
    6939/6939 [==============================] - 16s 2ms/step - loss: 0.0589 - val_loss: 0.0583
    Epoch 23/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0589 - val_loss: 0.0588
    Epoch 24/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0589 - val_loss: 0.0587
    Epoch 25/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0589 - val_loss: 0.0587
    Epoch 26/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0589 - val_loss: 0.0587
    Epoch 27/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0589 - val_loss: 0.0589
    Epoch 28/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0589 - val_loss: 0.0582
    Epoch 29/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0589 - val_loss: 0.0590
    Epoch 30/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0589 - val_loss: 0.0589
    Epoch 31/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0589 - val_loss: 0.0588
    Epoch 32/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0589 - val_loss: 0.0584
    Epoch 33/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0589 - val_loss: 0.0587
    Epoch 34/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0588 - val_loss: 0.0584
    Epoch 35/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0588 - val_loss: 0.0588
    Epoch 36/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0589 - val_loss: 0.0589
    Epoch 37/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0588 - val_loss: 0.0587
    Epoch 38/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0588 - val_loss: 0.0586
    Epoch 39/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0589 - val_loss: 0.0586
    Epoch 40/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0588 - val_loss: 0.0587
    Epoch 41/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0589 - val_loss: 0.0589
    Epoch 42/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0589 - val_loss: 0.0587
    Epoch 43/100
    6939/6939 [==============================] - 16s 2ms/step - loss: 0.0589 - val_loss: 0.0588
    Epoch 44/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0588 - val_loss: 0.0589
    Epoch 45/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0589 - val_loss: 0.0593
    Epoch 46/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0589 - val_loss: 0.0587
    Epoch 47/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0589 - val_loss: 0.0585
    Epoch 48/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0588 - val_loss: 0.0590
    Epoch 49/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0589 - val_loss: 0.0586
    Epoch 50/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0589 - val_loss: 0.0587
    Epoch 51/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0588 - val_loss: 0.0588
    Epoch 52/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0588 - val_loss: 0.0586
    Epoch 53/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0589 - val_loss: 0.0586
    Epoch 54/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0589 - val_loss: 0.0593
    Epoch 55/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0588 - val_loss: 0.0589
    Epoch 56/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0589 - val_loss: 0.0588
    Epoch 57/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0588 - val_loss: 0.0587
    Epoch 58/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0589 - val_loss: 0.0588
    Epoch 59/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0588 - val_loss: 0.0587
    Epoch 60/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0589 - val_loss: 0.0584
    Epoch 61/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0588 - val_loss: 0.0587
    Epoch 62/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0588 - val_loss: 0.0589
    Epoch 63/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0588 - val_loss: 0.0584
    Epoch 64/100
    6939/6939 [==============================] - 16s 2ms/step - loss: 0.0588 - val_loss: 0.0587
    Epoch 65/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0588 - val_loss: 0.0586
    Epoch 66/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0588 - val_loss: 0.0588
    Epoch 67/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0588 - val_loss: 0.0596
    Epoch 68/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0588 - val_loss: 0.0587
    Epoch 69/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0588 - val_loss: 0.0587
    Epoch 70/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0588 - val_loss: 0.0591
    Epoch 71/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0588 - val_loss: 0.0591
    Epoch 72/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0588 - val_loss: 0.0590
    Epoch 73/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0588 - val_loss: 0.0590
    Epoch 74/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0588 - val_loss: 0.0586
    Epoch 75/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0588 - val_loss: 0.0587
    Epoch 76/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0588 - val_loss: 0.0591
    Epoch 77/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0588 - val_loss: 0.0591
    Epoch 78/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0588 - val_loss: 0.0589
    Epoch 79/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0588 - val_loss: 0.0586
    Epoch 80/100
    6939/6939 [==============================] - 15s 2ms/step - loss: 0.0588 - val_loss: 0.0588
    Epoch 81/100
    6939/6939 [==============================] - 17s 2ms/step - loss: 0.0588 - val_loss: 0.0587
    Epoch 82/100
    6939/6939 [==============================] - 17s 2ms/step - loss: 0.0588 - val_loss: 0.0584
    Epoch 83/100
    6939/6939 [==============================] - 17s 2ms/step - loss: 0.0588 - val_loss: 0.0592
    Epoch 84/100
    6939/6939 [==============================] - 18s 3ms/step - loss: 0.0588 - val_loss: 0.0589
    Epoch 85/100
    6939/6939 [==============================] - 17s 2ms/step - loss: 0.0588 - val_loss: 0.0592
    Epoch 86/100
    6939/6939 [==============================] - 17s 2ms/step - loss: 0.0588 - val_loss: 0.0586
    Epoch 87/100
    6939/6939 [==============================] - 18s 3ms/step - loss: 0.0588 - val_loss: 0.0584
    Epoch 88/100
    6939/6939 [==============================] - 17s 2ms/step - loss: 0.0588 - val_loss: 0.0594
    Epoch 89/100
    6939/6939 [==============================] - 17s 2ms/step - loss: 0.0588 - val_loss: 0.0590
    Epoch 90/100
    6939/6939 [==============================] - 17s 2ms/step - loss: 0.0588 - val_loss: 0.0586
    Epoch 91/100
    6939/6939 [==============================] - 17s 3ms/step - loss: 0.0588 - val_loss: 0.0590
    Epoch 92/100
    6939/6939 [==============================] - 17s 3ms/step - loss: 0.0588 - val_loss: 0.0590
    Epoch 93/100
    6939/6939 [==============================] - 17s 2ms/step - loss: 0.0588 - val_loss: 0.0585
    Epoch 94/100
    6939/6939 [==============================] - 18s 3ms/step - loss: 0.0588 - val_loss: 0.0594
    Epoch 95/100
    6939/6939 [==============================] - 18s 3ms/step - loss: 0.0588 - val_loss: 0.0587
    Epoch 96/100
    6939/6939 [==============================] - 19s 3ms/step - loss: 0.0588 - val_loss: 0.0593
    Epoch 97/100
    6939/6939 [==============================] - 21s 3ms/step - loss: 0.0588 - val_loss: 0.0584
    Epoch 98/100
    6939/6939 [==============================] - 20s 3ms/step - loss: 0.0588 - val_loss: 0.0589
    Epoch 99/100
    6939/6939 [==============================] - 19s 3ms/step - loss: 0.0588 - val_loss: 0.0588
    Epoch 100/100
    6939/6939 [==============================] - 18s 3ms/step - loss: 0.0588 - val_loss: 0.0590
    Model 2:
    Epoch 1/100
    5745/5745 [==============================] - 14s 2ms/step - loss: 0.1028 - val_loss: 0.0762
    Epoch 2/100
    5745/5745 [==============================] - 13s 2ms/step - loss: 0.0757 - val_loss: 0.0740
    Epoch 3/100
    5745/5745 [==============================] - 13s 2ms/step - loss: 0.0748 - val_loss: 0.0730
    Epoch 4/100
    5745/5745 [==============================] - 13s 2ms/step - loss: 0.0743 - val_loss: 0.0734
    Epoch 5/100
    5745/5745 [==============================] - 13s 2ms/step - loss: 0.0741 - val_loss: 0.0733
    Epoch 6/100
    5745/5745 [==============================] - 13s 2ms/step - loss: 0.0740 - val_loss: 0.0730
    Epoch 7/100
    5745/5745 [==============================] - 13s 2ms/step - loss: 0.0739 - val_loss: 0.0729
    Epoch 8/100
    5745/5745 [==============================] - 13s 2ms/step - loss: 0.0738 - val_loss: 0.0732
    Epoch 9/100
    5745/5745 [==============================] - 13s 2ms/step - loss: 0.0737 - val_loss: 0.0727
    Epoch 10/100
    5745/5745 [==============================] - 13s 2ms/step - loss: 0.0736 - val_loss: 0.0733
    Epoch 11/100
    5745/5745 [==============================] - 13s 2ms/step - loss: 0.0736 - val_loss: 0.0725
    Epoch 12/100
    5745/5745 [==============================] - 13s 2ms/step - loss: 0.0736 - val_loss: 0.0726
    Epoch 13/100
    5745/5745 [==============================] - 13s 2ms/step - loss: 0.0734 - val_loss: 0.0725
    Epoch 14/100
    5745/5745 [==============================] - 13s 2ms/step - loss: 0.0735 - val_loss: 0.0726
    Epoch 15/100
    5745/5745 [==============================] - 13s 2ms/step - loss: 0.0734 - val_loss: 0.0732
    Epoch 16/100
    5745/5745 [==============================] - 13s 2ms/step - loss: 0.0734 - val_loss: 0.0726
    Epoch 17/100
    5745/5745 [==============================] - 13s 2ms/step - loss: 0.0734 - val_loss: 0.0726
    Epoch 18/100
    5745/5745 [==============================] - 14s 2ms/step - loss: 0.0734 - val_loss: 0.0726
    Epoch 19/100
    5745/5745 [==============================] - 13s 2ms/step - loss: 0.0733 - val_loss: 0.0732
    Epoch 20/100
    5745/5745 [==============================] - 13s 2ms/step - loss: 0.0733 - val_loss: 0.0730
    Epoch 21/100
    5745/5745 [==============================] - 13s 2ms/step - loss: 0.0733 - val_loss: 0.0725
    Epoch 22/100
    5745/5745 [==============================] - 14s 2ms/step - loss: 0.0732 - val_loss: 0.0726
    Epoch 23/100
    5745/5745 [==============================] - 13s 2ms/step - loss: 0.0731 - val_loss: 0.0726
    Epoch 24/100
    5745/5745 [==============================] - 13s 2ms/step - loss: 0.0732 - val_loss: 0.0725
    Epoch 25/100
    5745/5745 [==============================] - 14s 2ms/step - loss: 0.0731 - val_loss: 0.0727
    Epoch 26/100
    5745/5745 [==============================] - 13s 2ms/step - loss: 0.0732 - val_loss: 0.0730
    Epoch 27/100
    5745/5745 [==============================] - 13s 2ms/step - loss: 0.0732 - val_loss: 0.0725
    Epoch 28/100
    5745/5745 [==============================] - 13s 2ms/step - loss: 0.0731 - val_loss: 0.0724
    Epoch 29/100
    5745/5745 [==============================] - 13s 2ms/step - loss: 0.0731 - val_loss: 0.0731
    Epoch 30/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0731 - val_loss: 0.0725
    Epoch 31/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0731 - val_loss: 0.0727
    Epoch 32/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0730 - val_loss: 0.0725
    Epoch 33/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0729 - val_loss: 0.0724
    Epoch 34/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0730 - val_loss: 0.0727
    Epoch 35/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0730 - val_loss: 0.0729
    Epoch 36/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0730 - val_loss: 0.0723
    Epoch 37/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0729 - val_loss: 0.0724
    Epoch 38/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0729 - val_loss: 0.0729
    Epoch 39/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0730 - val_loss: 0.0725
    Epoch 40/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0730 - val_loss: 0.0723
    Epoch 41/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0729 - val_loss: 0.0722
    Epoch 42/100
    5745/5745 [==============================] - 12s 2ms/step - loss: 0.0729 - val_loss: 0.0723
    Epoch 43/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0730 - val_loss: 0.0728
    Epoch 44/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0731 - val_loss: 0.0725
    Epoch 45/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0730 - val_loss: 0.0725
    Epoch 46/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0730 - val_loss: 0.0730
    Epoch 47/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0730 - val_loss: 0.0727
    Epoch 48/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0730 - val_loss: 0.0725
    Epoch 49/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0729 - val_loss: 0.0727
    Epoch 50/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0730 - val_loss: 0.0728
    Epoch 51/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0729 - val_loss: 0.0724
    Epoch 52/100
    5745/5745 [==============================] - 12s 2ms/step - loss: 0.0729 - val_loss: 0.0724
    Epoch 53/100
    5745/5745 [==============================] - 12s 2ms/step - loss: 0.0729 - val_loss: 0.0730
    Epoch 54/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0729 - val_loss: 0.0724
    Epoch 55/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0729 - val_loss: 0.0724
    Epoch 56/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0728 - val_loss: 0.0726
    Epoch 57/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0728 - val_loss: 0.0725
    Epoch 58/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0728 - val_loss: 0.0725
    Epoch 59/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0728 - val_loss: 0.0727
    Epoch 60/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0728 - val_loss: 0.0726
    Epoch 61/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0728 - val_loss: 0.0728
    Epoch 62/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0729 - val_loss: 0.0726
    Epoch 63/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0729 - val_loss: 0.0725
    Epoch 64/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0728 - val_loss: 0.0724
    Epoch 65/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0728 - val_loss: 0.0724
    Epoch 66/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0729 - val_loss: 0.0730
    Epoch 67/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0728 - val_loss: 0.0726
    Epoch 68/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0728 - val_loss: 0.0724
    Epoch 69/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0729 - val_loss: 0.0727
    Epoch 70/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0730 - val_loss: 0.0734
    Epoch 71/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0729 - val_loss: 0.0729
    Epoch 72/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0729 - val_loss: 0.0727
    Epoch 73/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0728 - val_loss: 0.0727
    Epoch 74/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0728 - val_loss: 0.0727
    Epoch 75/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0730 - val_loss: 0.0728
    Epoch 76/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0729 - val_loss: 0.0726
    Epoch 77/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0728 - val_loss: 0.0726
    Epoch 78/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0727 - val_loss: 0.0726
    Epoch 79/100
    5745/5745 [==============================] - 12s 2ms/step - loss: 0.0728 - val_loss: 0.0725
    Epoch 80/100
    5745/5745 [==============================] - 12s 2ms/step - loss: 0.0728 - val_loss: 0.0725
    Epoch 81/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0727 - val_loss: 0.0728
    Epoch 82/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0727 - val_loss: 0.0726
    Epoch 83/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0727 - val_loss: 0.0727
    Epoch 84/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0728 - val_loss: 0.0729
    Epoch 85/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0728 - val_loss: 0.0728
    Epoch 86/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0727 - val_loss: 0.0727
    Epoch 87/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0727 - val_loss: 0.0730
    Epoch 88/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0726 - val_loss: 0.0727
    Epoch 89/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0728 - val_loss: 0.0726
    Epoch 90/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0729 - val_loss: 0.0726
    Epoch 91/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0730 - val_loss: 0.0728
    Epoch 92/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0729 - val_loss: 0.0728
    Epoch 93/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0729 - val_loss: 0.0729
    Epoch 94/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0728 - val_loss: 0.0729
    Epoch 95/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0727 - val_loss: 0.0727
    Epoch 96/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0729 - val_loss: 0.0728
    Epoch 97/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0728 - val_loss: 0.0727
    Epoch 98/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0727 - val_loss: 0.0732
    Epoch 99/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0728 - val_loss: 0.0727
    Epoch 100/100
    5745/5745 [==============================] - 11s 2ms/step - loss: 0.0728 - val_loss: 0.0729
    Model 3:
    Epoch 1/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.3603 - val_loss: 0.2006
    Epoch 2/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.1843 - val_loss: 0.1489
    Epoch 3/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.1386 - val_loss: 0.1311
    Epoch 4/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.1239 - val_loss: 0.1226
    Epoch 5/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.1173 - val_loss: 0.1181
    Epoch 6/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.1144 - val_loss: 0.1170
    Epoch 7/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.1132 - val_loss: 0.1163
    Epoch 8/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.1112 - val_loss: 0.1164
    Epoch 9/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.1105 - val_loss: 0.1139
    Epoch 10/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.1088 - val_loss: 0.1120
    Epoch 11/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.1087 - val_loss: 0.1118
    Epoch 12/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.1070 - val_loss: 0.1114
    Epoch 13/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.1059 - val_loss: 0.1116
    Epoch 14/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.1043 - val_loss: 0.1111
    Epoch 15/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.1036 - val_loss: 0.1103
    Epoch 16/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.1030 - val_loss: 0.1102
    Epoch 17/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.1024 - val_loss: 0.1098
    Epoch 18/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.1018 - val_loss: 0.1095
    Epoch 19/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.1014 - val_loss: 0.1086
    Epoch 20/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.1005 - val_loss: 0.1086
    Epoch 21/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0997 - val_loss: 0.1095
    Epoch 22/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0993 - val_loss: 0.1092
    Epoch 23/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0986 - val_loss: 0.1090
    Epoch 24/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0983 - val_loss: 0.1096
    Epoch 25/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0975 - val_loss: 0.1099
    Epoch 26/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0964 - val_loss: 0.1092
    Epoch 27/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0968 - val_loss: 0.1092
    Epoch 28/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0960 - val_loss: 0.1093
    Epoch 29/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0954 - val_loss: 0.1100
    Epoch 30/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0952 - val_loss: 0.1096
    Epoch 31/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0946 - val_loss: 0.1105
    Epoch 32/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0942 - val_loss: 0.1109
    Epoch 33/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0930 - val_loss: 0.1103
    Epoch 34/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0917 - val_loss: 0.1103
    Epoch 35/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0908 - val_loss: 0.1112
    Epoch 36/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0922 - val_loss: 0.1107
    Epoch 37/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0918 - val_loss: 0.1117
    Epoch 38/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0910 - val_loss: 0.1111
    Epoch 39/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0910 - val_loss: 0.1118
    Epoch 40/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0897 - val_loss: 0.1126
    Epoch 41/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0884 - val_loss: 0.1128
    Epoch 42/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0890 - val_loss: 0.1121
    Epoch 43/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0893 - val_loss: 0.1118
    Epoch 44/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0877 - val_loss: 0.1122
    Epoch 45/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0874 - val_loss: 0.1121
    Epoch 46/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0864 - val_loss: 0.1119
    Epoch 47/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0873 - val_loss: 0.1128
    Epoch 48/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0858 - val_loss: 0.1126
    Epoch 49/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0872 - val_loss: 0.1128
    Epoch 50/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0852 - val_loss: 0.1133
    Epoch 51/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0857 - val_loss: 0.1137
    Epoch 52/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0848 - val_loss: 0.1142
    Epoch 53/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0842 - val_loss: 0.1134
    Epoch 54/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0839 - val_loss: 0.1120
    Epoch 55/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0820 - val_loss: 0.1153
    Epoch 56/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0831 - val_loss: 0.1139
    Epoch 57/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0821 - val_loss: 0.1151
    Epoch 58/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0829 - val_loss: 0.1147
    Epoch 59/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0821 - val_loss: 0.1133
    Epoch 60/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0820 - val_loss: 0.1148
    Epoch 61/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0809 - val_loss: 0.1162
    Epoch 62/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0808 - val_loss: 0.1151
    Epoch 63/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0795 - val_loss: 0.1149
    Epoch 64/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0802 - val_loss: 0.1159
    Epoch 65/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0797 - val_loss: 0.1153
    Epoch 66/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0791 - val_loss: 0.1158
    Epoch 67/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0789 - val_loss: 0.1172
    Epoch 68/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0804 - val_loss: 0.1152
    Epoch 69/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0790 - val_loss: 0.1165
    Epoch 70/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0788 - val_loss: 0.1167
    Epoch 71/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0781 - val_loss: 0.1174
    Epoch 72/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0772 - val_loss: 0.1186
    Epoch 73/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0785 - val_loss: 0.1163
    Epoch 74/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0778 - val_loss: 0.1163
    Epoch 75/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0767 - val_loss: 0.1189
    Epoch 76/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0774 - val_loss: 0.1189
    Epoch 77/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0769 - val_loss: 0.1177
    Epoch 78/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0759 - val_loss: 0.1187
    Epoch 79/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0755 - val_loss: 0.1203
    Epoch 80/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0761 - val_loss: 0.1188
    Epoch 81/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0743 - val_loss: 0.1203
    Epoch 82/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0753 - val_loss: 0.1177
    Epoch 83/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0760 - val_loss: 0.1199
    Epoch 84/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0746 - val_loss: 0.1191
    Epoch 85/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0756 - val_loss: 0.1193
    Epoch 86/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0743 - val_loss: 0.1206
    Epoch 87/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0732 - val_loss: 0.1209
    Epoch 88/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0746 - val_loss: 0.1213
    Epoch 89/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0725 - val_loss: 0.1223
    Epoch 90/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0738 - val_loss: 0.1196
    Epoch 91/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0725 - val_loss: 0.1241
    Epoch 92/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0744 - val_loss: 0.1226
    Epoch 93/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0727 - val_loss: 0.1213
    Epoch 94/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0718 - val_loss: 0.1218
    Epoch 95/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0746 - val_loss: 0.1217
    Epoch 96/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0733 - val_loss: 0.1227
    Epoch 97/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0698 - val_loss: 0.1250
    Epoch 98/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0731 - val_loss: 0.1225
    Epoch 99/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0728 - val_loss: 0.1226
    Epoch 100/100
    362/362 [==============================] - 1s 2ms/step - loss: 0.0718 - val_loss: 0.1231

    The first model performed best, settling around a mean squared error of 0.0588 (though it seems even after setting random_state inside train_test_split and seed inside the dropout layers, there’s still a bit of entropy left in the training of the model, so if you run this notebook yourself, the course of your training may look a little different). Apparently the additional records in the first dataset did more to aid in training than the additional metrics in the subsequent sets. And the dropout layers didn’t stop the third model from overfitting anyway.

    第一個模型表現最佳,解決圍繞0.0588均方誤差(雖然它似乎甚至設置后random_state內train_test_split和seed漏失層內,仍然有位熵留在模型的訓練,所以,如果你運行筆記本,培訓的過程可能會有些不同)。 顯然,與后續集合中的其他指標相比,第一個數據集中的其他記錄在培訓方面的作用更大。 而且,輟學層并沒有阻止第三種模型過度擬合。

    保存最終模型 (Saving the final model)

    First I need to create the final model, training model_1’s architecture on the full dataset. Then I’ll save the model to disk with its save function and save the data transformer using joblib so I can use it in the API.

    首先,我需要創建最終模型,在完整數據集上訓練model_1的體系結構。 然后,我將使用其save功能將模型保存到磁盤,并使用joblib保存數據轉換器,以便可以在API中使用它。

    Epoch 1/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0750
    Epoch 2/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0597
    Epoch 3/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0593
    Epoch 4/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0592
    Epoch 5/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0591
    Epoch 6/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0590
    Epoch 7/100
    8674/8674 [==============================] - 17s 2ms/step - loss: 0.0590
    Epoch 8/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0590
    Epoch 9/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0589
    Epoch 10/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0589
    Epoch 11/100
    8674/8674 [==============================] - 17s 2ms/step - loss: 0.0589
    Epoch 12/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0589
    Epoch 13/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0588
    Epoch 14/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0588
    Epoch 15/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0589
    Epoch 16/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0588
    Epoch 17/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0588
    Epoch 18/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0588
    Epoch 19/100
    8674/8674 [==============================] - 17s 2ms/step - loss: 0.0588
    Epoch 20/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0588
    Epoch 21/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0588
    Epoch 22/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0588
    Epoch 23/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0588
    Epoch 24/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0588
    Epoch 25/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 26/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0588
    Epoch 27/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0588
    Epoch 28/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0588
    Epoch 29/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 30/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0588
    Epoch 31/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 32/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 33/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0588
    Epoch 34/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 35/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 36/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 37/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 38/100
    8674/8674 [==============================] - 17s 2ms/step - loss: 0.0587
    Epoch 39/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 40/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 41/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 42/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0588
    Epoch 43/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 44/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 45/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0588
    Epoch 46/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 47/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0588
    Epoch 48/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 49/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 50/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0588
    Epoch 51/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 52/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 53/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 54/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 55/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 56/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 57/100
    8674/8674 [==============================] - 17s 2ms/step - loss: 0.0587
    Epoch 58/100
    8674/8674 [==============================] - 17s 2ms/step - loss: 0.0587
    Epoch 59/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 60/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 61/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0586
    Epoch 62/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 63/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0586
    Epoch 64/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 65/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 66/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 67/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 68/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 69/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 70/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 71/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 72/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 73/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 74/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 75/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 76/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 77/100
    8674/8674 [==============================] - 17s 2ms/step - loss: 0.0587
    Epoch 78/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 79/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 80/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 81/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 82/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 83/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 84/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 85/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 86/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0588
    Epoch 87/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 88/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0588
    Epoch 89/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 90/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 91/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 92/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 93/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 94/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 95/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 96/100
    8674/8674 [==============================] - 17s 2ms/step - loss: 0.0587
    Epoch 97/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 98/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587
    Epoch 99/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0586
    Epoch 100/100
    8674/8674 [==============================] - 16s 2ms/step - loss: 0.0587['data_transformer.joblib']

    構建API (Building the API)

    I first tried building this API and its demonstrational front end on Glitch, which, officially, only supports Node.js back ends, but unofficially you can get a Python server running there (which I’ve done before using Flask). When I was almost finished, though, I tried importing TensorFlow to load my model, and it was then that I discovered that unlike Node.js dependencies, Python dependencies get installed to your project’s disk space on Glitch, and not even their pro plan provides enough space to contain the entire TensorFlow library. Which totally makes sense — I certainly wasn’t using the platform as intended.

    我首先嘗試在Glitch上構建此API及其示例性前端,該Glitch正式僅支持Node.js后端,但是在非正式的情況下,您可以在那里運行Python服務器( 在使用Flask 之前 ,我已經完成了此工作 )。 不過,當我快要結束時,我嘗試導入TensorFlow來加載我的模型,然后我發現與Node.js依賴項不同,Python依賴項已安裝到項目在Glitch上的磁盤空間中,甚至他們的專業計劃都沒有提供有足夠的空間來容納整個TensorFlow庫。 完全有道理-我當然沒有按預期使用平臺。

    Then I discovered PythonAnywhere! They have plenty of common Python libraries already installed out-of-the-box, including TensorFlow, so I got everything working perfectly there.

    然后我發現了PythonAnywhere ! 他們已經開箱即用地安裝了許多常見的Python庫,包括TensorFlow,所以我在那里一切都能正常工作。

    So head on over if you’d like to check it out; the front end includes a form where you can fill in all the parameters for the API request, and there are a couple of buttons that let you fill the form with typical examples from the dataset (since there are a lot of fields to fill in). Or you can send a GET request to https://tywmick.pythonanywhere.com/api/predict if you really want to include every parameter in your query string. In either case, you’re also more than welcome to take a look at its source on GitHub.

    因此,如果您想查看一下,請直接過去; 前端包含一個表格,您可以在其中填寫API請求的所有參數,并且有幾個按鈕可以讓您使用數據集中的典型示例來填寫表格(因為有很多字段需要填寫) 。 或者,如果您確實要在查詢字符串中包含每個參數,則可以將GET請求發送到https://tywmick.pythonanywhere.com/api/predict 。 無論哪種情況,都非常歡迎您在GitHub上查看其源代碼。

    One of the best/worst things about machine learning is that your models always have room for improvement. I mentioned a couple of ideas along the way above for how I could improve the model in the future, but what’s the first thing you would tweak? Leave a response—I’d love to hear!

    關于機器學習的最好/最糟糕的事情之一就是您的模型總是有改進的空間。 在上面的過程中,我提到了一些想法,以便將來我可以改進模型,但是您要調整的第一件事是什么? 留下回應-我很想聽聽!

    翻譯自: https://towardsdatascience.com/loan-risk-neural-network-30c8f65f052e

    總結

    以上是生活随笔為你收集整理的建立神经网络来预测贷款风险的全部內容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

    国内综合精品午夜久久资源 | 成人免费无码大片a毛片 | 丰满少妇高潮惨叫视频 | 成人无码精品1区2区3区免费看 | 国产无套粉嫩白浆在线 | 国产精品高潮呻吟av久久 | 女人被爽到呻吟gif动态图视看 | 国精产品一品二品国精品69xx | 超碰97人人做人人爱少妇 | 亚洲人亚洲人成电影网站色 | 日本爽爽爽爽爽爽在线观看免 | 性做久久久久久久免费看 | 精品久久久无码人妻字幂 | 好爽又高潮了毛片免费下载 | 成人精品视频一区二区 | 内射老妇bbwx0c0ck | 精品一二三区久久aaa片 | 无码毛片视频一区二区本码 | 国产九九九九九九九a片 | 又大又紧又粉嫩18p少妇 | 免费看男女做好爽好硬视频 | 一本一道久久综合久久 | 国产综合色产在线精品 | 久久久久亚洲精品中文字幕 | 国产精品自产拍在线观看 | 国产成人无码av片在线观看不卡 | 欧美35页视频在线观看 | 波多野结衣乳巨码无在线观看 | 天堂一区人妻无码 | 中文久久乱码一区二区 | 亚洲日韩一区二区三区 | 亚洲精品无码人妻无码 | v一区无码内射国产 | 国产成人人人97超碰超爽8 | 亚洲日韩一区二区 | 精品厕所偷拍各类美女tp嘘嘘 | 欧美怡红院免费全部视频 | 国产精品人人妻人人爽 | 麻豆果冻传媒2021精品传媒一区下载 | 性欧美videos高清精品 | 午夜福利一区二区三区在线观看 | 97精品人妻一区二区三区香蕉 | 在线观看国产午夜福利片 | 少妇久久久久久人妻无码 | 欧美性猛交内射兽交老熟妇 | 久久久中文久久久无码 | a在线观看免费网站大全 | 亚无码乱人伦一区二区 | 成人精品视频一区二区 | 午夜精品一区二区三区的区别 | 最近中文2019字幕第二页 | 成人欧美一区二区三区 | 人人妻人人澡人人爽欧美精品 | 三级4级全黄60分钟 | 小sao货水好多真紧h无码视频 | 色婷婷欧美在线播放内射 | 性做久久久久久久免费看 | 国产精品理论片在线观看 | 日本乱偷人妻中文字幕 | 玩弄中年熟妇正在播放 | 性生交大片免费看l | 国产成人无码一二三区视频 | 精品一区二区不卡无码av | 麻豆国产人妻欲求不满 | 国产成人久久精品流白浆 | 无码人妻精品一区二区三区不卡 | 国产另类ts人妖一区二区 | 精品夜夜澡人妻无码av蜜桃 | 国产特级毛片aaaaaa高潮流水 | 真人与拘做受免费视频一 | 日韩精品无码一区二区中文字幕 | 久久这里只有精品视频9 | 久久久久成人片免费观看蜜芽 | 内射老妇bbwx0c0ck | 久久五月精品中文字幕 | 成在人线av无码免费 | 亚洲 激情 小说 另类 欧美 | 色综合久久中文娱乐网 | 国产av一区二区精品久久凹凸 | 日本大乳高潮视频在线观看 | 99久久人妻精品免费二区 | 亚洲一区二区三区国产精华液 | 亚洲一区二区三区在线观看网站 | 久久无码中文字幕免费影院蜜桃 | 成人无码精品1区2区3区免费看 | 欧美成人家庭影院 | 久久午夜夜伦鲁鲁片无码免费 | 欧美自拍另类欧美综合图片区 | 少妇的肉体aa片免费 | 欧美野外疯狂做受xxxx高潮 | 欧美zoozzooz性欧美 | 久久综合网欧美色妞网 | 全黄性性激高免费视频 | 国产麻豆精品精东影业av网站 | 免费国产成人高清在线观看网站 | 狠狠cao日日穞夜夜穞av | 国内精品久久久久久中文字幕 | 露脸叫床粗话东北少妇 | 亚洲精品久久久久久一区二区 | 婷婷综合久久中文字幕蜜桃三电影 | 久在线观看福利视频 | 欧美熟妇另类久久久久久不卡 | 欧美三级不卡在线观看 | 国产亚洲精品精品国产亚洲综合 | 久久久久99精品国产片 | 狠狠噜狠狠狠狠丁香五月 | 成人无码视频免费播放 | 亚洲精品久久久久中文第一幕 | 无码人妻丰满熟妇区五十路百度 | 国精产品一品二品国精品69xx | 欧美freesex黑人又粗又大 | 国产精品无码成人午夜电影 | 亚洲精品美女久久久久久久 | 国产成人精品必看 | 天堂亚洲2017在线观看 | 一个人免费观看的www视频 | 亚洲日韩av一区二区三区四区 | 131美女爱做视频 | 天天摸天天碰天天添 | 久久久国产精品无码免费专区 | 亚洲国产一区二区三区在线观看 | 老熟妇仑乱视频一区二区 | 欧美日韩在线亚洲综合国产人 | 丰满肥臀大屁股熟妇激情视频 | 成人欧美一区二区三区黑人 | 欧美日韩一区二区综合 | 国产精品手机免费 | 国产精华av午夜在线观看 | 亚洲精品一区二区三区在线观看 | 中文字幕无线码 | 久久熟妇人妻午夜寂寞影院 | 久久久久国色av免费观看性色 | 日韩欧美中文字幕在线三区 | 无码人妻丰满熟妇区毛片18 | 97精品人妻一区二区三区香蕉 | 给我免费的视频在线观看 | 亚洲性无码av中文字幕 | 麻豆成人精品国产免费 | 中文字幕 人妻熟女 | 久久综合给合久久狠狠狠97色 | 中文无码伦av中文字幕 | 久久久久久亚洲精品a片成人 | 久久五月精品中文字幕 | 熟女少妇人妻中文字幕 | 好男人社区资源 | 影音先锋中文字幕无码 | 午夜精品久久久久久久久 | 在线观看国产一区二区三区 | 日韩在线不卡免费视频一区 | 香港三级日本三级妇三级 | 免费网站看v片在线18禁无码 | 精品久久综合1区2区3区激情 | 色婷婷欧美在线播放内射 | 网友自拍区视频精品 | 国产极品美女高潮无套在线观看 | 99久久精品国产一区二区蜜芽 | 日日躁夜夜躁狠狠躁 | 欧美丰满熟妇xxxx | 久久午夜无码鲁丝片 | 免费无码一区二区三区蜜桃大 | 亚洲毛片av日韩av无码 | 日本一卡2卡3卡四卡精品网站 | 98国产精品综合一区二区三区 | av无码不卡在线观看免费 | 国产精品高潮呻吟av久久 | 欧洲vodafone精品性 | 中文字幕人妻无码一区二区三区 | 中文字幕精品av一区二区五区 | a在线亚洲男人的天堂 | 午夜精品一区二区三区在线观看 | 女人被爽到呻吟gif动态图视看 | 亚洲精品综合五月久久小说 | 欧美真人作爱免费视频 | 1000部啪啪未满十八勿入下载 | 国产成人无码a区在线观看视频app | 亚洲爆乳无码专区 | 国产无遮挡吃胸膜奶免费看 | 人妻少妇被猛烈进入中文字幕 | 国产精品无码永久免费888 | 欧美人与善在线com | 日韩精品无码一区二区中文字幕 | 天海翼激烈高潮到腰振不止 | 亚洲午夜福利在线观看 | 国产美女精品一区二区三区 | 亚洲高清偷拍一区二区三区 | 青青青爽视频在线观看 | 国产乱子伦视频在线播放 | 国产精品对白交换视频 | 国产亚洲欧美日韩亚洲中文色 | 精品无码一区二区三区爱欲 | 亚洲无人区一区二区三区 | 丝袜美腿亚洲一区二区 | 国内丰满熟女出轨videos | 纯爱无遮挡h肉动漫在线播放 | 欧美自拍另类欧美综合图片区 | 精品无码国产自产拍在线观看蜜 | 久久午夜无码鲁丝片午夜精品 | 中文字幕无码av波多野吉衣 | 天天躁夜夜躁狠狠是什么心态 | 丰满妇女强制高潮18xxxx | 自拍偷自拍亚洲精品10p | 亚洲第一网站男人都懂 | 丰满肥臀大屁股熟妇激情视频 | 国产一区二区三区精品视频 | 久久久久人妻一区精品色欧美 | 亚洲一区二区三区国产精华液 | 亚洲精品鲁一鲁一区二区三区 | 久久精品女人的天堂av | 久久久久se色偷偷亚洲精品av | 精品一区二区不卡无码av | 国产成人久久精品流白浆 | 天堂久久天堂av色综合 | 国产精品久久久久久无码 | 在线播放无码字幕亚洲 | 国产精品无码永久免费888 | 国产精品.xx视频.xxtv | 久久人人爽人人爽人人片ⅴ | 熟女体下毛毛黑森林 | 色诱久久久久综合网ywww | 久久午夜无码鲁丝片秋霞 | 久久久久99精品成人片 | 久久久久久av无码免费看大片 | 国产午夜手机精彩视频 | 国产卡一卡二卡三 | 99久久精品国产一区二区蜜芽 | 亚洲 另类 在线 欧美 制服 | 日本xxxx色视频在线观看免费 | 久久久www成人免费毛片 | 亚洲精品一区二区三区在线观看 | 久久精品中文字幕大胸 | 亚洲а∨天堂久久精品2021 | 午夜福利不卡在线视频 | 狠狠色噜噜狠狠狠7777奇米 | 午夜无码人妻av大片色欲 | 精品日本一区二区三区在线观看 | 精品日本一区二区三区在线观看 | 国产成人精品久久亚洲高清不卡 | 久久亚洲中文字幕精品一区 | 国产极品美女高潮无套在线观看 | 狠狠色丁香久久婷婷综合五月 | 伊人久久大香线焦av综合影院 | 国产精品久久久久久无码 | 日本护士毛茸茸高潮 | 少女韩国电视剧在线观看完整 | 99久久久无码国产aaa精品 | 国产精品无码一区二区三区不卡 | 久久zyz资源站无码中文动漫 | 国产热a欧美热a在线视频 | 天堂久久天堂av色综合 | 黑人大群体交免费视频 | 国产精品视频免费播放 | 亚洲色大成网站www | 国产色xx群视频射精 | 久久综合给久久狠狠97色 | 少妇无码一区二区二三区 | 国产精品理论片在线观看 | 色情久久久av熟女人妻网站 | 婷婷五月综合激情中文字幕 | yw尤物av无码国产在线观看 | 无码人妻久久一区二区三区不卡 | 亚洲国产欧美在线成人 | 国产精品怡红院永久免费 | 人人妻人人澡人人爽欧美一区九九 | 亚洲中文字幕无码中字 | 中文无码成人免费视频在线观看 | 好爽又高潮了毛片免费下载 | 一本大道久久东京热无码av | 一本色道久久综合亚洲精品不卡 | 国产精品内射视频免费 | 亚洲中文字幕在线无码一区二区 | 久久精品99久久香蕉国产色戒 | 人人澡人人妻人人爽人人蜜桃 | 东京无码熟妇人妻av在线网址 | 狠狠噜狠狠狠狠丁香五月 | 欧美真人作爱免费视频 | 真人与拘做受免费视频 | 免费中文字幕日韩欧美 | 一二三四在线观看免费视频 | 欧美 日韩 亚洲 在线 | 国产舌乚八伦偷品w中 | 精品无码国产自产拍在线观看蜜 | 亚洲高清偷拍一区二区三区 | av人摸人人人澡人人超碰下载 | 国产又爽又黄又刺激的视频 | 无码av最新清无码专区吞精 | 蜜臀av无码人妻精品 | 久久成人a毛片免费观看网站 | av在线亚洲欧洲日产一区二区 | 久久久久亚洲精品中文字幕 | 亚洲国产精华液网站w | www国产精品内射老师 | 亚洲国产精华液网站w | 国产成人久久精品流白浆 | 日欧一片内射va在线影院 | 水蜜桃av无码 | 亚洲人成影院在线无码按摩店 | 亚洲 欧美 激情 小说 另类 | 亚洲熟妇色xxxxx欧美老妇 | 日韩无码专区 | 国产乱子伦视频在线播放 | 动漫av网站免费观看 | 1000部夫妻午夜免费 | 中文字幕无码人妻少妇免费 | 国精产品一区二区三区 | 精品少妇爆乳无码av无码专区 | 精品厕所偷拍各类美女tp嘘嘘 | a国产一区二区免费入口 | 国产人妻人伦精品1国产丝袜 | 一个人看的视频www在线 | 性欧美videos高清精品 | 色五月丁香五月综合五月 | 国产精品久久久一区二区三区 | 97精品人妻一区二区三区香蕉 | 精品无码一区二区三区爱欲 | 综合激情五月综合激情五月激情1 | 久久综合给久久狠狠97色 | а天堂中文在线官网 | 国产精品人人妻人人爽 | 正在播放老肥熟妇露脸 | 欧美激情一区二区三区成人 | 亚洲欧洲日本无在线码 | 两性色午夜视频免费播放 | 亚拍精品一区二区三区探花 | 久久久国产精品无码免费专区 | 亚洲精品一区三区三区在线观看 | 纯爱无遮挡h肉动漫在线播放 | 在线精品亚洲一区二区 | 国产乱人无码伦av在线a | 蜜臀aⅴ国产精品久久久国产老师 | 国产精品第一国产精品 | 久久综合给久久狠狠97色 | 日韩av无码中文无码电影 | 久久精品国产精品国产精品污 | 国产真实夫妇视频 | 久久久久亚洲精品男人的天堂 | 欧美精品无码一区二区三区 | 国产人成高清在线视频99最全资源 | 亚洲色成人中文字幕网站 | 国产肉丝袜在线观看 | 欧美三级a做爰在线观看 | 正在播放东北夫妻内射 | 蜜桃av抽搐高潮一区二区 | 亚洲日韩中文字幕在线播放 | 午夜成人1000部免费视频 | 久久久精品欧美一区二区免费 | 国产成人久久精品流白浆 | 亚洲综合在线一区二区三区 | 国产成人精品三级麻豆 | 中文字幕乱码人妻无码久久 | 精品人妻人人做人人爽夜夜爽 | 欧美激情内射喷水高潮 | 少妇无码av无码专区在线观看 | 麻花豆传媒剧国产免费mv在线 | 成人动漫在线观看 | 亚洲国产精品美女久久久久 | 红桃av一区二区三区在线无码av | 国产成人无码午夜视频在线观看 | 亚洲一区二区三区在线观看网站 | 少妇无套内谢久久久久 | 日本xxxx色视频在线观看免费 | 少妇性l交大片欧洲热妇乱xxx | 久久久中文字幕日本无吗 | aⅴ亚洲 日韩 色 图网站 播放 | 午夜福利一区二区三区在线观看 | 四虎国产精品一区二区 | 国产黑色丝袜在线播放 | 成熟女人特级毛片www免费 | av无码久久久久不卡免费网站 | 久久成人a毛片免费观看网站 | 亚洲の无码国产の无码步美 | 国内揄拍国内精品人妻 | 熟妇激情内射com | 色欲综合久久中文字幕网 | 国产无av码在线观看 | 久久精品一区二区三区四区 | 亚洲国产精品一区二区美利坚 | 人妻中文无码久热丝袜 | 精品一区二区三区波多野结衣 | 精品国产一区二区三区四区在线看 | 麻豆国产丝袜白领秘书在线观看 | 丰满少妇人妻久久久久久 | 亚洲一区二区三区含羞草 | 双乳奶水饱满少妇呻吟 | 人妻aⅴ无码一区二区三区 | 欧美熟妇另类久久久久久多毛 | 国产午夜亚洲精品不卡下载 | 欧美老人巨大xxxx做受 | 国产精品久久久久9999小说 | 麻花豆传媒剧国产免费mv在线 | 日本大乳高潮视频在线观看 | 男人扒开女人内裤强吻桶进去 | 窝窝午夜理论片影院 | 成人欧美一区二区三区 | 久久午夜无码鲁丝片 | 国产在线一区二区三区四区五区 | 欧美人与物videos另类 | 蜜臀av在线观看 在线欧美精品一区二区三区 | 少妇人妻av毛片在线看 | 久青草影院在线观看国产 | 久久精品成人欧美大片 | 真人与拘做受免费视频 | 秋霞特色aa大片 | 日韩亚洲欧美中文高清在线 | 亚欧洲精品在线视频免费观看 | 无码一区二区三区在线 | 中文字幕精品av一区二区五区 | 久久国产精品萌白酱免费 | 中文字幕av无码一区二区三区电影 | 蜜桃视频插满18在线观看 | 久久久中文久久久无码 | 亚洲国产av精品一区二区蜜芽 | 亚洲va欧美va天堂v国产综合 | 日韩精品无码一区二区中文字幕 | 国产成人无码一二三区视频 | 久久精品国产99久久6动漫 | 久久综合九色综合欧美狠狠 | 亚洲最大成人网站 | 水蜜桃亚洲一二三四在线 | 精品夜夜澡人妻无码av蜜桃 | 亚洲一区二区三区无码久久 | 日本在线高清不卡免费播放 | 内射白嫩少妇超碰 | 亚洲欧美色中文字幕在线 | 国产猛烈高潮尖叫视频免费 | 日本一卡二卡不卡视频查询 | 兔费看少妇性l交大片免费 | 欧美人与禽猛交狂配 | 国产口爆吞精在线视频 | 久久人妻内射无码一区三区 | 全黄性性激高免费视频 | 亚洲欧洲无卡二区视頻 | 亚洲国产av精品一区二区蜜芽 | 成人三级无码视频在线观看 | 亚洲天堂2017无码中文 | 国产亚洲精品精品国产亚洲综合 | 日日夜夜撸啊撸 | 国产精品无码一区二区三区不卡 | 成人无码影片精品久久久 | 日本一区二区三区免费播放 | 日韩人妻系列无码专区 | 人人澡人摸人人添 | 日日摸天天摸爽爽狠狠97 | 精品无码国产一区二区三区av | 女人被男人爽到呻吟的视频 | 小鲜肉自慰网站xnxx | 国精品人妻无码一区二区三区蜜柚 | 亚洲va欧美va天堂v国产综合 | 小泽玛莉亚一区二区视频在线 | 蜜桃av蜜臀av色欲av麻 999久久久国产精品消防器材 | 精品欧洲av无码一区二区三区 | 我要看www免费看插插视频 | 熟妇人妻激情偷爽文 | 波多野结衣av一区二区全免费观看 | 妺妺窝人体色www婷婷 | 麻豆av传媒蜜桃天美传媒 | 性啪啪chinese东北女人 | 在线天堂新版最新版在线8 | 日韩人妻无码一区二区三区久久99 | 国产免费久久精品国产传媒 | 精品久久综合1区2区3区激情 | 日本一区二区三区免费播放 | 亚洲日本va中文字幕 | 亚洲人成无码网www | 乱人伦中文视频在线观看 | 无码人妻精品一区二区三区下载 | 内射欧美老妇wbb | 丝袜足控一区二区三区 | 精品人人妻人人澡人人爽人人 | 国产成人无码午夜视频在线观看 | 国产午夜手机精彩视频 | 两性色午夜视频免费播放 | 国产小呦泬泬99精品 | 久久人人爽人人爽人人片ⅴ | 东京一本一道一二三区 | 少妇性l交大片欧洲热妇乱xxx | 强辱丰满人妻hd中文字幕 | 亚洲 另类 在线 欧美 制服 | 国产两女互慰高潮视频在线观看 | 欧美一区二区三区视频在线观看 | 国产人成高清在线视频99最全资源 | 国内丰满熟女出轨videos | 国产乱人无码伦av在线a | 亚洲国产精品成人久久蜜臀 | 亚洲一区av无码专区在线观看 | 欧美激情一区二区三区成人 | 高清国产亚洲精品自在久久 | 桃花色综合影院 | 免费无码的av片在线观看 | 色综合久久中文娱乐网 | 国产午夜手机精彩视频 | 中文字幕+乱码+中文字幕一区 | 欧美成人家庭影院 | 成年美女黄网站色大免费全看 | 国产成人精品优优av | 性欧美牲交xxxxx视频 | 国产精品无码一区二区桃花视频 | 人妻少妇精品无码专区动漫 | 黑人巨大精品欧美黑寡妇 | 精品 日韩 国产 欧美 视频 | а√天堂www在线天堂小说 | 大屁股大乳丰满人妻 | 亚洲自偷精品视频自拍 | 丝袜足控一区二区三区 | 久久亚洲精品中文字幕无男同 | 日韩无套无码精品 | 精品国产福利一区二区 | 色综合久久久无码中文字幕 | 少妇久久久久久人妻无码 | 国产激情无码一区二区 | 亚洲国产欧美在线成人 | 亚洲精品中文字幕乱码 | 日韩在线不卡免费视频一区 | 99精品视频在线观看免费 | a片免费视频在线观看 | 成人欧美一区二区三区黑人免费 | 无码国产色欲xxxxx视频 | 无码人妻久久一区二区三区不卡 | 无码av中文字幕免费放 | 欧美丰满熟妇xxxx性ppx人交 | 97久久超碰中文字幕 | 亚洲成av人综合在线观看 | 亚洲国产精华液网站w | 色诱久久久久综合网ywww | 中文字幕乱码人妻无码久久 | 精品无码一区二区三区爱欲 | 日韩精品a片一区二区三区妖精 | 99精品无人区乱码1区2区3区 | 一本久道久久综合狠狠爱 | 久久久亚洲欧洲日产国码αv | √8天堂资源地址中文在线 | 亚洲国产欧美日韩精品一区二区三区 | 青青久在线视频免费观看 | 成人精品视频一区二区 | 婷婷综合久久中文字幕蜜桃三电影 | 人人妻人人澡人人爽欧美一区九九 | 亚洲精品国产精品乱码不卡 | 国产熟女一区二区三区四区五区 | 少妇高潮喷潮久久久影院 | 偷窥日本少妇撒尿chinese | 亚洲人成影院在线无码按摩店 | 国产综合色产在线精品 | 欧美日韩色另类综合 | 99国产精品白浆在线观看免费 | 国产成人精品视频ⅴa片软件竹菊 | 亚洲色成人中文字幕网站 | 中文字幕 亚洲精品 第1页 | 久久精品成人欧美大片 | 欧美日韩一区二区综合 | 亚洲熟妇色xxxxx欧美老妇 | 国产手机在线αⅴ片无码观看 | 国产精品人妻一区二区三区四 | 人妻天天爽夜夜爽一区二区 | 曰韩少妇内射免费播放 | 97人妻精品一区二区三区 | 欧美阿v高清资源不卡在线播放 | 色综合久久久无码中文字幕 | 欧美午夜特黄aaaaaa片 | 2020最新国产自产精品 | 久久综合色之久久综合 | 亚洲欧美中文字幕5发布 | 欧美刺激性大交 | 亚洲小说春色综合另类 | 精品熟女少妇av免费观看 | 国产亚洲日韩欧美另类第八页 | av无码不卡在线观看免费 | 久久久久成人精品免费播放动漫 | 日本护士xxxxhd少妇 | 蜜桃臀无码内射一区二区三区 | 国产激情无码一区二区app | 国产成人精品一区二区在线小狼 | 思思久久99热只有频精品66 | 久久这里只有精品视频9 | 乱码午夜-极国产极内射 | 2020久久超碰国产精品最新 | 久久国产36精品色熟妇 | 国产艳妇av在线观看果冻传媒 | 久久99精品国产.久久久久 | 又大又黄又粗又爽的免费视频 | 日韩 欧美 动漫 国产 制服 | 久久久久亚洲精品中文字幕 | 影音先锋中文字幕无码 | 中文字幕精品av一区二区五区 | 成人精品一区二区三区中文字幕 | 亚洲第一网站男人都懂 | 色欲综合久久中文字幕网 | 人妻人人添人妻人人爱 | 亚洲中文字幕va福利 | 蜜桃视频插满18在线观看 | 欧美日韩视频无码一区二区三 | 日日干夜夜干 | 我要看www免费看插插视频 | 日日碰狠狠躁久久躁蜜桃 | 国产欧美熟妇另类久久久 | 亚洲欧美日韩成人高清在线一区 | 欧美高清在线精品一区 | 中文无码精品a∨在线观看不卡 | 成人亚洲精品久久久久软件 | 又色又爽又黄的美女裸体网站 | 免费无码肉片在线观看 | 午夜免费福利小电影 | 亚洲啪av永久无码精品放毛片 | 欧美性猛交内射兽交老熟妇 | 国精产品一品二品国精品69xx | 国产免费久久精品国产传媒 | 亚洲日韩av片在线观看 | 久久天天躁狠狠躁夜夜免费观看 | 熟女俱乐部五十路六十路av | 又色又爽又黄的美女裸体网站 | 久久精品一区二区三区四区 | 久久无码中文字幕免费影院蜜桃 | 国产精品亚洲а∨无码播放麻豆 | 宝宝好涨水快流出来免费视频 | 成人av无码一区二区三区 | √天堂资源地址中文在线 | 人妻少妇精品视频专区 | 欧美一区二区三区 | 76少妇精品导航 | 性史性农村dvd毛片 | 四虎4hu永久免费 | 久久人人爽人人爽人人片av高清 | 国产在线一区二区三区四区五区 | 亚洲人成无码网www | 无码帝国www无码专区色综合 | 色欲av亚洲一区无码少妇 | 高潮毛片无遮挡高清免费视频 | 最新国产乱人伦偷精品免费网站 | 欧美日韩综合一区二区三区 | 国产极品视觉盛宴 | 亚洲国产精品无码久久久久高潮 | 久久人人爽人人爽人人片ⅴ | 国产一区二区三区精品视频 | 国产三级久久久精品麻豆三级 | 日韩无套无码精品 | 日本大香伊一区二区三区 | 色窝窝无码一区二区三区色欲 | 欧美日本精品一区二区三区 | 88国产精品欧美一区二区三区 | 久久熟妇人妻午夜寂寞影院 | 国产成人无码av一区二区 | 久久综合色之久久综合 | 亚洲男人av香蕉爽爽爽爽 | 激情内射日本一区二区三区 | 国产成人无码午夜视频在线观看 | 亚洲娇小与黑人巨大交 | 国产精品福利视频导航 | 狠狠色噜噜狠狠狠7777奇米 | 久久五月精品中文字幕 | 色欲综合久久中文字幕网 | 在线亚洲高清揄拍自拍一品区 | 亚洲娇小与黑人巨大交 | www国产精品内射老师 | 亚洲另类伦春色综合小说 | 夜先锋av资源网站 | 丰满人妻精品国产99aⅴ | 亚洲精品一区二区三区四区五区 | 天天爽夜夜爽夜夜爽 | 成人精品一区二区三区中文字幕 | 欧美三级不卡在线观看 | 久久久久久国产精品无码下载 | 伊人久久大香线蕉av一区二区 | 国产亚av手机在线观看 | 内射老妇bbwx0c0ck | 亚洲日本va中文字幕 | 久久熟妇人妻午夜寂寞影院 | 国色天香社区在线视频 | 国产人成高清在线视频99最全资源 | 中文字幕人妻无码一夲道 | 无码一区二区三区在线 | 丰满人妻翻云覆雨呻吟视频 | 亚洲综合另类小说色区 | 丝袜 中出 制服 人妻 美腿 | 少妇被黑人到高潮喷出白浆 | 性史性农村dvd毛片 | 亚洲男女内射在线播放 | 日韩少妇内射免费播放 | 一区二区三区乱码在线 | 欧洲 | 啦啦啦www在线观看免费视频 | 国产精品亚洲专区无码不卡 | 久久精品国产99久久6动漫 | 黑人玩弄人妻中文在线 | 亚洲日韩乱码中文无码蜜桃臀网站 | 国产熟女一区二区三区四区五区 | 国产国语老龄妇女a片 | 成人亚洲精品久久久久 | 影音先锋中文字幕无码 | 日韩在线不卡免费视频一区 | yw尤物av无码国产在线观看 | 东京一本一道一二三区 | 国产99久久精品一区二区 | 亚洲区小说区激情区图片区 | 午夜精品久久久内射近拍高清 | 亚洲va欧美va天堂v国产综合 | 精品乱子伦一区二区三区 | 女高中生第一次破苞av | 久久99精品国产麻豆 | 又色又爽又黄的美女裸体网站 | 久久99精品国产麻豆 | 国产精品无码永久免费888 | 99久久久无码国产精品免费 | 综合激情五月综合激情五月激情1 | 国产莉萝无码av在线播放 | 四虎国产精品一区二区 | 偷窥村妇洗澡毛毛多 | 久久久中文字幕日本无吗 | a在线亚洲男人的天堂 | 成在人线av无码免费 | 麻豆md0077饥渴少妇 | 色一情一乱一伦一区二区三欧美 | 精品无码一区二区三区的天堂 | www国产亚洲精品久久久日本 | 国产黄在线观看免费观看不卡 | 亚洲精品国产a久久久久久 | 国产三级精品三级男人的天堂 | 国产福利视频一区二区 | 久久人妻内射无码一区三区 | 国内精品人妻无码久久久影院蜜桃 | 人妻少妇精品无码专区动漫 | 日韩少妇白浆无码系列 | 熟妇女人妻丰满少妇中文字幕 | 九九热爱视频精品 | 人人妻人人澡人人爽人人精品浪潮 | 无码人妻出轨黑人中文字幕 | 精品无码av一区二区三区 | 呦交小u女精品视频 | 久热国产vs视频在线观看 | 亚洲一区二区观看播放 | 一本久久伊人热热精品中文字幕 | 国产精品成人av在线观看 | 久久综合九色综合97网 | 欧美精品无码一区二区三区 | 又黄又爽又色的视频 | 国内精品人妻无码久久久影院蜜桃 | 西西人体www44rt大胆高清 | 国产精品久久久久久久9999 | 国产内射爽爽大片视频社区在线 | 天天做天天爱天天爽综合网 | 成人试看120秒体验区 | 免费乱码人妻系列无码专区 | 水蜜桃亚洲一二三四在线 | 亚洲成av人综合在线观看 | 少女韩国电视剧在线观看完整 | 亚洲日韩av一区二区三区中文 | 国产精品美女久久久网av | 亚洲乱亚洲乱妇50p | 学生妹亚洲一区二区 | 国产精品va在线观看无码 | 日本又色又爽又黄的a片18禁 | 精品日本一区二区三区在线观看 | 一个人看的www免费视频在线观看 | 漂亮人妻洗澡被公强 日日躁 | 中文精品无码中文字幕无码专区 | 精品久久久久久亚洲精品 | 久久久中文字幕日本无吗 | 桃花色综合影院 | 在线亚洲高清揄拍自拍一品区 | 蜜臀av在线观看 在线欧美精品一区二区三区 | 人妻少妇被猛烈进入中文字幕 | 国产绳艺sm调教室论坛 | 欧美怡红院免费全部视频 | 欧美人与禽zoz0性伦交 | 国产成人午夜福利在线播放 | 欧美激情一区二区三区成人 | 中文字幕 亚洲精品 第1页 | 色婷婷av一区二区三区之红樱桃 | 国产特级毛片aaaaaa高潮流水 | 在线亚洲高清揄拍自拍一品区 | 精品国精品国产自在久国产87 | 精品无人区无码乱码毛片国产 | 精品无码一区二区三区的天堂 | 亚洲中文字幕在线无码一区二区 | 曰韩无码二三区中文字幕 | 亚洲中文字幕va福利 | 真人与拘做受免费视频 | 狠狠综合久久久久综合网 | 色欲综合久久中文字幕网 | 日本一区二区三区免费播放 | 日韩精品无码免费一区二区三区 | 97精品人妻一区二区三区香蕉 | 欧美性黑人极品hd | 亚洲精品美女久久久久久久 | 奇米影视7777久久精品人人爽 | 少妇无码一区二区二三区 | 亚洲一区二区三区香蕉 | 国产农村乱对白刺激视频 | 一本无码人妻在中文字幕免费 | 熟妇女人妻丰满少妇中文字幕 | 日产精品高潮呻吟av久久 | 成人精品天堂一区二区三区 | 亚洲中文字幕无码一久久区 | 国产亲子乱弄免费视频 | 亚洲成a人一区二区三区 | 欧美 丝袜 自拍 制服 另类 | 亚洲熟熟妇xxxx | 欧美日本精品一区二区三区 | 国产九九九九九九九a片 | 成人精品天堂一区二区三区 | 国产无av码在线观看 | 亚洲国产精品一区二区美利坚 | a在线观看免费网站大全 | 国产精品嫩草久久久久 | 国产肉丝袜在线观看 | 久久精品人人做人人综合 | 亚洲精品欧美二区三区中文字幕 | 亚洲啪av永久无码精品放毛片 | 欧美性黑人极品hd | 国产精品亚洲综合色区韩国 | 午夜福利一区二区三区在线观看 | 久久久亚洲欧洲日产国码αv | 国产美女精品一区二区三区 | 亚洲色大成网站www国产 | 午夜时刻免费入口 | 久久人人爽人人爽人人片av高清 | 国产av一区二区精品久久凹凸 | 99久久久无码国产aaa精品 | 欧美老人巨大xxxx做受 | 精品偷自拍另类在线观看 | 欧美精品无码一区二区三区 | 午夜时刻免费入口 | 成在人线av无码免观看麻豆 | 一本久久伊人热热精品中文字幕 | 国产色xx群视频射精 | 亚洲娇小与黑人巨大交 | 日韩在线不卡免费视频一区 | 18无码粉嫩小泬无套在线观看 | aⅴ亚洲 日韩 色 图网站 播放 | 麻豆国产人妻欲求不满谁演的 | aa片在线观看视频在线播放 | 人人妻人人澡人人爽欧美一区 | 欧美成人免费全部网站 | 欧美三级a做爰在线观看 | 婷婷丁香六月激情综合啪 | 亚洲国产精品无码一区二区三区 | 亚洲精品一区二区三区婷婷月 | 日本护士xxxxhd少妇 | 亚洲精品综合一区二区三区在线 | 熟妇女人妻丰满少妇中文字幕 | 久热国产vs视频在线观看 | 国产精品久久久久久亚洲影视内衣 | 久久精品女人的天堂av | 国产香蕉尹人综合在线观看 | 成人免费视频一区二区 | 国产情侣作爱视频免费观看 | 久久久久99精品国产片 | 久久熟妇人妻午夜寂寞影院 | 国产成人精品久久亚洲高清不卡 | 在线成人www免费观看视频 | 久久熟妇人妻午夜寂寞影院 | 中文精品久久久久人妻不卡 | 欧美一区二区三区 | 免费人成网站视频在线观看 | 国产精品久久久久久亚洲影视内衣 | 国产无遮挡吃胸膜奶免费看 | 亚洲欧洲日本无在线码 | 女高中生第一次破苞av | 久久国产劲爆∧v内射 | 国产精品久免费的黄网站 | 水蜜桃亚洲一二三四在线 | 国产精品a成v人在线播放 | 曰本女人与公拘交酡免费视频 | 精品aⅴ一区二区三区 | 亚洲精品午夜国产va久久成人 | 久久aⅴ免费观看 | 一本久道高清无码视频 | aⅴ在线视频男人的天堂 | 日本一区二区三区免费高清 | 国产办公室秘书无码精品99 | 狂野欧美激情性xxxx | 久久精品国产一区二区三区肥胖 | 丁香花在线影院观看在线播放 | 熟妇女人妻丰满少妇中文字幕 | 国产又爽又猛又粗的视频a片 | 波多野结衣av在线观看 | 玩弄中年熟妇正在播放 | 97无码免费人妻超级碰碰夜夜 | 久久久久久久人妻无码中文字幕爆 | 免费播放一区二区三区 | 红桃av一区二区三区在线无码av | 亚洲一区二区三区在线观看网站 | 亚洲欧洲无卡二区视頻 | 99久久精品日本一区二区免费 | 成人免费视频在线观看 | 2020最新国产自产精品 | 免费观看黄网站 | 一本大道久久东京热无码av | av人摸人人人澡人人超碰下载 | 性欧美videos高清精品 | 国产成人无码一二三区视频 | 男女爱爱好爽视频免费看 | 黑人粗大猛烈进出高潮视频 | 无套内谢的新婚少妇国语播放 | 成人性做爰aaa片免费看不忠 | 久久99国产综合精品 | 精品偷拍一区二区三区在线看 | 国产亚洲视频中文字幕97精品 | 内射老妇bbwx0c0ck | 国产极品美女高潮无套在线观看 | 国产精品无码永久免费888 | av无码不卡在线观看免费 | 小泽玛莉亚一区二区视频在线 | 日韩成人一区二区三区在线观看 | 亚洲欧美色中文字幕在线 | 亚洲春色在线视频 | 国产9 9在线 | 中文 | 3d动漫精品啪啪一区二区中 | 中文字幕乱码人妻二区三区 | 精品人妻人人做人人爽夜夜爽 | 国产无遮挡又黄又爽免费视频 | 俺去俺来也www色官网 | 亚洲性无码av中文字幕 | 国产97人人超碰caoprom | 狠狠噜狠狠狠狠丁香五月 | 乌克兰少妇xxxx做受 | 国产高潮视频在线观看 | 久久这里只有精品视频9 | 久久综合激激的五月天 | 久久人妻内射无码一区三区 | 台湾无码一区二区 | 人人妻人人澡人人爽人人精品浪潮 | 人妻互换免费中文字幕 | 久久精品人人做人人综合 | 呦交小u女精品视频 | 亚洲熟妇自偷自拍另类 | 成人无码视频在线观看网站 | 中文无码精品a∨在线观看不卡 | 黑人玩弄人妻中文在线 | 欧美日韩久久久精品a片 | 亚洲色欲色欲天天天www | 少妇人妻大乳在线视频 | a片免费视频在线观看 | 国内少妇偷人精品视频 | 无码人妻出轨黑人中文字幕 | 日本精品人妻无码免费大全 | 蜜臀aⅴ国产精品久久久国产老师 | 久久久久免费看成人影片 | 精品国产av色一区二区深夜久久 | 欧美35页视频在线观看 | 少妇性荡欲午夜性开放视频剧场 | 国产人妻精品一区二区三区 | 久久国产精品精品国产色婷婷 | 亚洲人成网站免费播放 | 婷婷丁香五月天综合东京热 | 国产成人一区二区三区别 | 天堂在线观看www | 无码国产乱人伦偷精品视频 | 久久99精品国产.久久久久 | 色欲人妻aaaaaaa无码 | 内射欧美老妇wbb | 少妇性俱乐部纵欲狂欢电影 | 极品嫩模高潮叫床 | 给我免费的视频在线观看 | 欧美亚洲日韩国产人成在线播放 | 老头边吃奶边弄进去呻吟 | 久久久久成人片免费观看蜜芽 | 欧美成人家庭影院 | 无码一区二区三区在线观看 | 97精品人妻一区二区三区香蕉 | 九九在线中文字幕无码 | 国产特级毛片aaaaaa高潮流水 | 两性色午夜视频免费播放 | 少女韩国电视剧在线观看完整 | 东京热男人av天堂 | 红桃av一区二区三区在线无码av | 国语精品一区二区三区 | 乱人伦人妻中文字幕无码 | 极品尤物被啪到呻吟喷水 | 午夜理论片yy44880影院 | 国产成人精品久久亚洲高清不卡 | 久久人人97超碰a片精品 | www国产精品内射老师 | 亚洲成色在线综合网站 | 久久久精品成人免费观看 | 国产精品免费大片 | 国产熟妇另类久久久久 | 日本护士xxxxhd少妇 | 国产色精品久久人妻 | 天天av天天av天天透 | 人妻天天爽夜夜爽一区二区 | 精品无人区无码乱码毛片国产 | 精品夜夜澡人妻无码av蜜桃 | 野外少妇愉情中文字幕 | 国产精品自产拍在线观看 | 国产电影无码午夜在线播放 | 亚洲精品国偷拍自产在线观看蜜桃 | 久久精品国产一区二区三区肥胖 | 成在人线av无码免费 | 欧美精品无码一区二区三区 | 色婷婷综合激情综在线播放 | 亚洲欧美中文字幕5发布 | 国产精品无码永久免费888 | 中文字幕日韩精品一区二区三区 | 国产又爽又猛又粗的视频a片 | 国产无套内射久久久国产 | 亚洲啪av永久无码精品放毛片 | 在线观看免费人成视频 | 人妻熟女一区 | 日韩人妻无码一区二区三区久久99 | а天堂中文在线官网 | 中文无码成人免费视频在线观看 | 亚洲精品一区二区三区在线观看 | 国产精品国产自线拍免费软件 | 蜜臀aⅴ国产精品久久久国产老师 | 亚洲国产精品无码一区二区三区 | 青春草在线视频免费观看 | 正在播放东北夫妻内射 | 漂亮人妻洗澡被公强 日日躁 | 丰满人妻被黑人猛烈进入 | 国产亚洲精品久久久久久久 | 97久久国产亚洲精品超碰热 | 国产精品亚洲一区二区三区喷水 | 精品国产一区二区三区四区在线看 | 7777奇米四色成人眼影 | 学生妹亚洲一区二区 | 一本色道婷婷久久欧美 | 在线播放免费人成毛片乱码 | 国产综合在线观看 | 国产电影无码午夜在线播放 | 97精品国产97久久久久久免费 | 中文字幕av日韩精品一区二区 | 欧美人与禽猛交狂配 | 77777熟女视频在线观看 а天堂中文在线官网 | 精品久久久无码中文字幕 | 乱人伦人妻中文字幕无码久久网 | 久久精品女人天堂av免费观看 | 精品无人国产偷自产在线 | 亚洲精品午夜无码电影网 | 中文字幕色婷婷在线视频 | 亚洲精品午夜无码电影网 | 日韩精品a片一区二区三区妖精 | 国产午夜视频在线观看 | 玩弄中年熟妇正在播放 | 麻豆国产人妻欲求不满 | 国产人妻精品一区二区三区 | 97夜夜澡人人双人人人喊 | 国产小呦泬泬99精品 | 国产午夜精品一区二区三区嫩草 | 无码精品人妻一区二区三区av | 久久视频在线观看精品 | 国产亚洲美女精品久久久2020 | 久久伊人色av天堂九九小黄鸭 | 亚洲熟女一区二区三区 | 无码人妻久久一区二区三区不卡 | 无码人妻丰满熟妇区五十路百度 | 久9re热视频这里只有精品 | 亲嘴扒胸摸屁股激烈网站 | 久精品国产欧美亚洲色aⅴ大片 | 伊人久久大香线蕉av一区二区 | 国产成人综合在线女婷五月99播放 | 久久久中文久久久无码 | 国产一区二区三区四区五区加勒比 | 久久久无码中文字幕久... | 欧美亚洲日韩国产人成在线播放 | 久久久中文久久久无码 | 欧洲vodafone精品性 | 色五月丁香五月综合五月 | 久久精品人人做人人综合 | 久久国产劲爆∧v内射 | 少妇久久久久久人妻无码 | 色综合久久中文娱乐网 | 国产精品久久久av久久久 | 男女爱爱好爽视频免费看 | 黄网在线观看免费网站 | 丰腴饱满的极品熟妇 | 成人毛片一区二区 | 清纯唯美经典一区二区 | 国产精品久久久久久亚洲影视内衣 | 亚洲国产欧美日韩精品一区二区三区 | 狠狠亚洲超碰狼人久久 | 欧美性猛交内射兽交老熟妇 | 又大又硬又黄的免费视频 | 国产午夜无码精品免费看 | 无码午夜成人1000部免费视频 | 水蜜桃亚洲一二三四在线 | 亚洲国产成人av在线观看 | 久久久久久亚洲精品a片成人 | 亚洲一区二区三区在线观看网站 | 欧美国产日韩久久mv | 婷婷色婷婷开心五月四房播播 | 亚洲高清偷拍一区二区三区 | 久久久久久a亚洲欧洲av冫 | 牲欲强的熟妇农村老妇女视频 | 荫蒂被男人添的好舒服爽免费视频 | 骚片av蜜桃精品一区 | 久久精品一区二区三区四区 | 国产亚洲精品久久久久久久久动漫 | 88国产精品欧美一区二区三区 | 久久久无码中文字幕久... | 精品人妻av区 | 狠狠亚洲超碰狼人久久 | 免费观看又污又黄的网站 | 精品国精品国产自在久国产87 | 高潮毛片无遮挡高清免费视频 | 一本久久a久久精品亚洲 | 在教室伦流澡到高潮hnp视频 | 色婷婷久久一区二区三区麻豆 | 四虎国产精品一区二区 | ass日本丰满熟妇pics | 精品成在人线av无码免费看 | 麻豆国产人妻欲求不满谁演的 | 少妇厨房愉情理9仑片视频 | 丰满岳乱妇在线观看中字无码 | 日本护士xxxxhd少妇 | 天天躁日日躁狠狠躁免费麻豆 | 欧美性猛交内射兽交老熟妇 | 乱人伦人妻中文字幕无码 | 国产精品美女久久久久av爽李琼 | 四虎国产精品一区二区 | 亚洲自偷精品视频自拍 | av无码电影一区二区三区 | 国产精品福利视频导航 | 国产偷国产偷精品高清尤物 | 亚洲国产精品毛片av不卡在线 | 少妇无码吹潮 | 中文字幕av无码一区二区三区电影 | 日韩人妻无码一区二区三区久久99 | 精品偷自拍另类在线观看 | 麻花豆传媒剧国产免费mv在线 | 牲交欧美兽交欧美 | 丁香花在线影院观看在线播放 | 人人超人人超碰超国产 | 亚洲日本在线电影 | 国产激情无码一区二区 | 少妇无码av无码专区在线观看 | 福利一区二区三区视频在线观看 | 亚洲精品一区二区三区在线 | 亚洲综合在线一区二区三区 | 国产激情无码一区二区app | 丰满少妇女裸体bbw | 蜜桃臀无码内射一区二区三区 | 一二三四社区在线中文视频 | 玩弄少妇高潮ⅹxxxyw | 欧美肥老太牲交大战 | 熟妇人妻无码xxx视频 | 在线亚洲高清揄拍自拍一品区 | 精品无人区无码乱码毛片国产 | 18禁黄网站男男禁片免费观看 | 天天躁日日躁狠狠躁免费麻豆 | 色老头在线一区二区三区 | 亚洲第一无码av无码专区 | 色综合久久网 | 久久久精品456亚洲影院 | 人妻人人添人妻人人爱 | 日本精品人妻无码免费大全 | 精品国产国产综合精品 | 国产无套内射久久久国产 | 精品偷自拍另类在线观看 | 少妇高潮一区二区三区99 | 国产手机在线αⅴ片无码观看 | 久久久精品国产sm最大网站 | 漂亮人妻洗澡被公强 日日躁 | 久在线观看福利视频 | 美女扒开屁股让男人桶 | 国产高清不卡无码视频 | 丝袜 中出 制服 人妻 美腿 | 亚洲人成无码网www | 国产sm调教视频在线观看 | 97夜夜澡人人双人人人喊 | 少妇激情av一区二区 | 日韩欧美成人免费观看 | 西西人体www44rt大胆高清 | 欧美freesex黑人又粗又大 | 色狠狠av一区二区三区 | √天堂资源地址中文在线 | 国语自产偷拍精品视频偷 | 中文字幕无码视频专区 | 亚洲精品欧美二区三区中文字幕 | 最近的中文字幕在线看视频 | 亚洲色无码一区二区三区 | 亚洲а∨天堂久久精品2021 | 一本久久a久久精品亚洲 | 综合人妻久久一区二区精品 | 精品无码国产自产拍在线观看蜜 | 少妇无套内谢久久久久 | 国内少妇偷人精品视频免费 | 国产福利视频一区二区 | 国产精品-区区久久久狼 | 国产热a欧美热a在线视频 | 高潮毛片无遮挡高清免费 | 国产人妻精品午夜福利免费 | 欧美熟妇另类久久久久久多毛 | 少女韩国电视剧在线观看完整 | 亚洲人交乣女bbw | 领导边摸边吃奶边做爽在线观看 | 无码国产乱人伦偷精品视频 | 国产乱人伦av在线无码 | 久久久久久国产精品无码下载 | 亚洲午夜久久久影院 | 熟妇女人妻丰满少妇中文字幕 | 久久综合给合久久狠狠狠97色 | 国产熟女一区二区三区四区五区 | 精品国产青草久久久久福利 | 国产疯狂伦交大片 | 国产综合色产在线精品 | 帮老师解开蕾丝奶罩吸乳网站 | 国产无遮挡又黄又爽又色 | 国产精品毛多多水多 | 久久久久久av无码免费看大片 | 又紧又大又爽精品一区二区 | 99在线 | 亚洲 | 中国女人内谢69xxxxxa片 | 亚无码乱人伦一区二区 | 亚洲一区二区三区国产精华液 | 亚洲一区二区三区无码久久 | 国产超级va在线观看视频 | 中文字幕精品av一区二区五区 | 成人毛片一区二区 | 欧美日韩在线亚洲综合国产人 | 国产97色在线 | 免 | 人妻无码αv中文字幕久久琪琪布 | 性欧美牲交在线视频 | 亚洲人成人无码网www国产 | 蜜臀aⅴ国产精品久久久国产老师 | 亚洲精品中文字幕久久久久 | 性色av无码免费一区二区三区 | 精品一区二区三区无码免费视频 | 最新国产麻豆aⅴ精品无码 | 久久久久成人片免费观看蜜芽 | 国产人妻人伦精品 | 波多野结衣一区二区三区av免费 | 国产成人av免费观看 | 精品久久久久久人妻无码中文字幕 | 人人爽人人澡人人人妻 | 日本www一道久久久免费榴莲 | 国产午夜福利100集发布 | 美女张开腿让人桶 | 国产精品无码成人午夜电影 | 香蕉久久久久久av成人 | 一个人看的www免费视频在线观看 | 中文无码伦av中文字幕 | 中文字幕色婷婷在线视频 | 国产激情无码一区二区app | 帮老师解开蕾丝奶罩吸乳网站 | 亚洲精品久久久久中文第一幕 | 亚洲无人区一区二区三区 | 一个人看的www免费视频在线观看 | 精品国产一区二区三区av 性色 | 久久久国产一区二区三区 | 少妇无码av无码专区在线观看 | 99精品无人区乱码1区2区3区 | 欧洲极品少妇 | 国产成人综合在线女婷五月99播放 | 免费国产黄网站在线观看 | 一本大道伊人av久久综合 | 国内精品一区二区三区不卡 | 三级4级全黄60分钟 | 久久亚洲国产成人精品性色 | 天天躁日日躁狠狠躁免费麻豆 | av无码不卡在线观看免费 | 国产色在线 | 国产 | 少妇性l交大片欧洲热妇乱xxx | 亚洲精品午夜无码电影网 | 99久久99久久免费精品蜜桃 | 国产性生交xxxxx无码 | 日韩av无码一区二区三区不卡 | 亚洲国产高清在线观看视频 | 国内老熟妇对白xxxxhd | 国产亚洲精品久久久久久国模美 | 成人av无码一区二区三区 | 啦啦啦www在线观看免费视频 | 国产亚洲视频中文字幕97精品 | 欧美 亚洲 国产 另类 | 国产精品igao视频网 | 最近的中文字幕在线看视频 | 一区二区传媒有限公司 | 欧美国产日韩亚洲中文 | 乱人伦人妻中文字幕无码 | 精品国产麻豆免费人成网站 | 在线亚洲高清揄拍自拍一品区 | 国产精品二区一区二区aⅴ污介绍 | 色五月五月丁香亚洲综合网 | 水蜜桃色314在线观看 | 狂野欧美性猛xxxx乱大交 | 国产乱码精品一品二品 | 欧美丰满熟妇xxxx性ppx人交 | 2020久久超碰国产精品最新 | 成人无码精品1区2区3区免费看 | 国产亲子乱弄免费视频 | 亚洲欧美色中文字幕在线 | a国产一区二区免费入口 | 亚洲国产成人av在线观看 | 老熟妇乱子伦牲交视频 | 爱做久久久久久 | 久久zyz资源站无码中文动漫 | 男女性色大片免费网站 | 欧美高清在线精品一区 | 内射爽无广熟女亚洲 | 国产精品久久久久9999小说 | 国产美女极度色诱视频www | 任你躁在线精品免费 | 无码午夜成人1000部免费视频 | 蜜臀av在线播放 久久综合激激的五月天 | 免费视频欧美无人区码 | 国产精品第一国产精品 | 国产精品.xx视频.xxtv | 欧美日韩久久久精品a片 | 女人被男人爽到呻吟的视频 | 国产国产精品人在线视 | 粗大的内捧猛烈进出视频 | 亚洲国产综合无码一区 | 欧美 日韩 亚洲 在线 | 丰腴饱满的极品熟妇 | 国产精品久久久午夜夜伦鲁鲁 | 日韩av激情在线观看 | 天天拍夜夜添久久精品 | 国产精品毛片一区二区 | 亚洲国产成人av在线观看 | 久久99精品久久久久久动态图 | 波多野结衣aⅴ在线 | 日韩视频 中文字幕 视频一区 | 中文字幕日产无线码一区 | 亚洲理论电影在线观看 | 免费男性肉肉影院 | a国产一区二区免费入口 | 亚洲熟妇色xxxxx欧美老妇 | 曰本女人与公拘交酡免费视频 | 野外少妇愉情中文字幕 | 蜜桃av抽搐高潮一区二区 | 国产成人精品无码播放 | 日韩精品一区二区av在线 | 日本护士xxxxhd少妇 | 国内精品人妻无码久久久影院 | 国产真实夫妇视频 | 草草网站影院白丝内射 | 永久黄网站色视频免费直播 | 亚洲精品久久久久中文第一幕 | 国产精品无码永久免费888 | 国产精品亚洲五月天高清 | 国产精品高潮呻吟av久久4虎 | 国产亚洲精品久久久闺蜜 | 永久黄网站色视频免费直播 | 色综合久久88色综合天天 | 中文字幕中文有码在线 | 国产极品美女高潮无套在线观看 | 综合激情五月综合激情五月激情1 | 亚洲精品一区国产 | 精品无码国产一区二区三区av | 久久国产自偷自偷免费一区调 | 人人妻人人澡人人爽人人精品浪潮 | 精品久久久中文字幕人妻 | 一本色道久久综合亚洲精品不卡 | 性欧美大战久久久久久久 | 奇米影视7777久久精品人人爽 | 成熟女人特级毛片www免费 | 欧美 丝袜 自拍 制服 另类 | 性欧美熟妇videofreesex | 精品人妻人人做人人爽 | 人妻插b视频一区二区三区 | 亚洲熟妇色xxxxx亚洲 | 成人亚洲精品久久久久软件 | 成人影院yy111111在线观看 | 欧美日韩一区二区免费视频 | 亚洲自偷精品视频自拍 | 在线观看欧美一区二区三区 | 国产精品无码成人午夜电影 | 男人和女人高潮免费网站 | 婷婷丁香五月天综合东京热 | 2019nv天堂香蕉在线观看 | 午夜精品久久久久久久 | aⅴ亚洲 日韩 色 图网站 播放 | √8天堂资源地址中文在线 | 男女超爽视频免费播放 | 欧洲美熟女乱又伦 | 大地资源网第二页免费观看 | 色一情一乱一伦 | 一本精品99久久精品77 | 日本一区二区更新不卡 | 日本一本二本三区免费 | 欧美人与禽zoz0性伦交 | 无码任你躁久久久久久久 | 久久五月精品中文字幕 | a在线观看免费网站大全 | 香港三级日本三级妇三级 | 亚洲精品一区二区三区在线观看 | 无码av免费一区二区三区试看 | 亚洲精品午夜无码电影网 | 男人和女人高潮免费网站 | 丰腴饱满的极品熟妇 | 国产成人无码午夜视频在线观看 | 狂野欧美性猛交免费视频 | 国产亚av手机在线观看 | 午夜精品久久久久久久久 | 99久久久无码国产aaa精品 | 日本丰满护士爆乳xxxx | 18禁止看的免费污网站 | 久久熟妇人妻午夜寂寞影院 | 成人影院yy111111在线观看 | 国产真实乱对白精彩久久 | 国产精品高潮呻吟av久久 | 亚洲中文字幕av在天堂 | 最近的中文字幕在线看视频 | 妺妺窝人体色www在线小说 | 高潮毛片无遮挡高清免费视频 | 大屁股大乳丰满人妻 | 97夜夜澡人人双人人人喊 | a片在线免费观看 | 亚洲精品午夜国产va久久成人 | 国产两女互慰高潮视频在线观看 | 欧美乱妇无乱码大黄a片 | 精品国产麻豆免费人成网站 | 性色欲情网站iwww九文堂 | 伊人久久大香线焦av综合影院 | 国产手机在线αⅴ片无码观看 | 亚洲日韩av一区二区三区中文 | 成人毛片一区二区 | 亚洲天堂2017无码中文 | 欧美老妇交乱视频在线观看 | 日本精品人妻无码免费大全 | 无码人妻黑人中文字幕 | 国产乱人无码伦av在线a | 欧美 日韩 亚洲 在线 | а√资源新版在线天堂 | 国产免费观看黄av片 | 久久精品人妻少妇一区二区三区 | 少妇无码一区二区二三区 | 超碰97人人做人人爱少妇 | 国产午夜无码视频在线观看 | 亚洲 激情 小说 另类 欧美 | 人妻少妇精品无码专区动漫 | 在线欧美精品一区二区三区 | 成熟人妻av无码专区 | 波多野结衣av在线观看 | 4hu四虎永久在线观看 | 天天拍夜夜添久久精品大 | 色综合久久88色综合天天 | 久久人人爽人人爽人人片av高清 | 最近免费中文字幕中文高清百度 | 国产美女极度色诱视频www | 亚洲va中文字幕无码久久不卡 | 欧美黑人巨大xxxxx | 久久精品女人的天堂av | 国产免费久久精品国产传媒 | 女人色极品影院 | 秋霞成人午夜鲁丝一区二区三区 | 一本色道久久综合亚洲精品不卡 | 亚洲欧洲日本无在线码 | 久久精品99久久香蕉国产色戒 | 无码国内精品人妻少妇 | 亚洲精品中文字幕久久久久 | 中文字幕色婷婷在线视频 | 乱码午夜-极国产极内射 | 久久人人爽人人人人片 | 国产无av码在线观看 | 亚洲色大成网站www国产 | 久久人妻内射无码一区三区 | 人妻少妇精品无码专区动漫 | 正在播放东北夫妻内射 | 天天摸天天透天天添 | 久热国产vs视频在线观看 | 亚洲色大成网站www | 日本又色又爽又黄的a片18禁 | 丰满人妻精品国产99aⅴ | 亚洲精品美女久久久久久久 | 久久午夜无码鲁丝片秋霞 | 高清不卡一区二区三区 | 两性色午夜视频免费播放 | 中文精品久久久久人妻不卡 | 蜜臀av无码人妻精品 | 暴力强奷在线播放无码 | 伊人久久婷婷五月综合97色 | 青青青爽视频在线观看 | 久久精品一区二区三区四区 | 久久久久久亚洲精品a片成人 | 欧美亚洲国产一区二区三区 | 男女爱爱好爽视频免费看 | 国产精品久久久久久久影院 | 自拍偷自拍亚洲精品10p | 欧美日韩人成综合在线播放 | 爽爽影院免费观看 | 樱花草在线播放免费中文 | 久久97精品久久久久久久不卡 | 图片区 小说区 区 亚洲五月 | 国产亚洲人成a在线v网站 | 乌克兰少妇性做爰 | 荫蒂被男人添的好舒服爽免费视频 | 国产人妖乱国产精品人妖 | 成人免费视频一区二区 | 精品无码av一区二区三区 | 亚洲精品久久久久avwww潮水 | 国产综合在线观看 | 日韩精品无码一区二区中文字幕 | 日产国产精品亚洲系列 | 日韩 欧美 动漫 国产 制服 | 国产精品久久久一区二区三区 | 少妇无码一区二区二三区 | 国产亚洲精品久久久久久大师 | 伊人色综合久久天天小片 | 狂野欧美性猛交免费视频 | 中文字幕乱码亚洲无线三区 | 亚洲无人区一区二区三区 | 人人妻人人澡人人爽人人精品浪潮 | 性做久久久久久久久 | 久久www免费人成人片 | 露脸叫床粗话东北少妇 | 丰满人妻一区二区三区免费视频 | 国产香蕉尹人视频在线 | 黑人粗大猛烈进出高潮视频 | 国产片av国语在线观看 | 高潮毛片无遮挡高清免费 | 亚洲第一无码av无码专区 | 国产激情精品一区二区三区 | 最近免费中文字幕中文高清百度 | 国产精品对白交换视频 | 夜夜高潮次次欢爽av女 | 久久精品国产日本波多野结衣 | 欧美日韩人成综合在线播放 | 亚洲 a v无 码免 费 成 人 a v | 国产又粗又硬又大爽黄老大爷视 | 亚洲色www成人永久网址 | 日韩人妻少妇一区二区三区 | 精品熟女少妇av免费观看 | 无码人妻久久一区二区三区不卡 | 狠狠色欧美亚洲狠狠色www | 国产精品人妻一区二区三区四 | 少妇性l交大片 | 青草视频在线播放 | 夜先锋av资源网站 | 性欧美大战久久久久久久 | 人妻人人添人妻人人爱 | 人妻体内射精一区二区三四 | 亚洲午夜久久久影院 | 丝袜 中出 制服 人妻 美腿 | 亚洲精品久久久久久久久久久 | 国产精品久久久一区二区三区 | 久久久久久a亚洲欧洲av冫 | 久久亚洲中文字幕精品一区 | 精品一区二区三区无码免费视频 | 国产精品无码成人午夜电影 | 内射老妇bbwx0c0ck | 国产超级va在线观看视频 | 成 人 网 站国产免费观看 | 秋霞成人午夜鲁丝一区二区三区 | 日韩精品a片一区二区三区妖精 | 又大又黄又粗又爽的免费视频 | 日本va欧美va欧美va精品 | 国产无套内射久久久国产 | 沈阳熟女露脸对白视频 | 国产人妻久久精品二区三区老狼 | 麻豆国产人妻欲求不满谁演的 | 狂野欧美激情性xxxx | 亚洲国产精品一区二区第一页 | 男人的天堂av网站 | 国产九九九九九九九a片 | 帮老师解开蕾丝奶罩吸乳网站 | 99riav国产精品视频 | 无码播放一区二区三区 | 亚洲欧美日韩成人高清在线一区 | 男人扒开女人内裤强吻桶进去 | 一本色道婷婷久久欧美 | 中文字幕日韩精品一区二区三区 | 奇米影视888欧美在线观看 | 国产亚洲人成a在线v网站 | 中文字幕人妻无码一夲道 | 亚洲中文字幕va福利 | 久久久婷婷五月亚洲97号色 | 天堂亚洲免费视频 | 风流少妇按摩来高潮 | 人妻插b视频一区二区三区 | 大色综合色综合网站 | 色综合视频一区二区三区 | 国产精品国产三级国产专播 | 久久亚洲精品中文字幕无男同 | 欧美人妻一区二区三区 | 日韩精品无码一区二区中文字幕 | 国产精品人人爽人人做我的可爱 | 欧美人与善在线com | 曰本女人与公拘交酡免费视频 | 无码av免费一区二区三区试看 | 欧美乱妇无乱码大黄a片 | 亚洲国产欧美在线成人 | 色 综合 欧美 亚洲 国产 | 久久精品无码一区二区三区 | 亚洲综合无码久久精品综合 | 日本高清一区免费中文视频 | 精品一区二区三区无码免费视频 | 国产免费久久精品国产传媒 | 亚洲人亚洲人成电影网站色 | 久久www免费人成人片 | 精品国产成人一区二区三区 | 亚洲色偷偷偷综合网 | 人妻少妇精品无码专区二区 | 国产在线精品一区二区三区直播 | 黑森林福利视频导航 | 97精品国产97久久久久久免费 | 高清无码午夜福利视频 | 成人动漫在线观看 | 蜜桃av蜜臀av色欲av麻 999久久久国产精品消防器材 | 亚洲国产欧美日韩精品一区二区三区 | 一本无码人妻在中文字幕免费 | 亚洲va中文字幕无码久久不卡 | 日本肉体xxxx裸交 | 国产成人人人97超碰超爽8 | 少女韩国电视剧在线观看完整 | 日韩亚洲欧美精品综合 | 激情爆乳一区二区三区 | 日本大香伊一区二区三区 | 午夜嘿嘿嘿影院 | 高潮毛片无遮挡高清免费 | 国产熟女一区二区三区四区五区 | 377p欧洲日本亚洲大胆 | 综合人妻久久一区二区精品 | 亚洲欧洲日本无在线码 | 国产农村妇女高潮大叫 | 精品无人区无码乱码毛片国产 | 国产精品久久精品三级 | 夜夜影院未满十八勿进 | 黑人粗大猛烈进出高潮视频 | 亚洲人亚洲人成电影网站色 | 国内少妇偷人精品视频 | 丰满少妇弄高潮了www | 亚洲欧美色中文字幕在线 | 亚洲 另类 在线 欧美 制服 | 呦交小u女精品视频 | 国产成人无码a区在线观看视频app | 精品国产一区二区三区av 性色 | 狠狠躁日日躁夜夜躁2020 | 日本一本二本三区免费 | 人妻少妇被猛烈进入中文字幕 | 图片小说视频一区二区 | 亚洲人成人无码网www国产 | 少妇邻居内射在线 | 少妇的肉体aa片免费 | 成年美女黄网站色大免费视频 | 3d动漫精品啪啪一区二区中 | 在教室伦流澡到高潮hnp视频 | 国产成人无码区免费内射一片色欲 | 久久国产精品萌白酱免费 | www成人国产高清内射 | 国产在线aaa片一区二区99 | 麻豆蜜桃av蜜臀av色欲av | 2020最新国产自产精品 | 国产精品高潮呻吟av久久 | 日韩精品一区二区av在线 | 日产精品高潮呻吟av久久 | 国产深夜福利视频在线 | 久久午夜无码鲁丝片秋霞 | 亚洲国产高清在线观看视频 | 永久免费观看美女裸体的网站 | 久久久中文字幕日本无吗 | 中文无码精品a∨在线观看不卡 | 国产精品丝袜黑色高跟鞋 | 国产精品久久国产精品99 | 九九热爱视频精品 | 女人色极品影院 | 亚洲国产av精品一区二区蜜芽 | 亚洲欧美综合区丁香五月小说 | 真人与拘做受免费视频一 | 少妇的肉体aa片免费 | 色综合久久久无码网中文 | 精品无码成人片一区二区98 | 影音先锋中文字幕无码 | 久久国内精品自在自线 | 亚洲中文字幕无码中文字在线 | 日本欧美一区二区三区乱码 | 亚洲va欧美va天堂v国产综合 | 色欲久久久天天天综合网精品 | 青青青手机频在线观看 | 四十如虎的丰满熟妇啪啪 | 麻豆成人精品国产免费 | 久久亚洲精品成人无码 | 国内揄拍国内精品少妇国语 | 无码人妻精品一区二区三区不卡 | 蜜桃臀无码内射一区二区三区 | 亚洲日韩精品欧美一区二区 | 国产莉萝无码av在线播放 | 无码人妻丰满熟妇区毛片18 | 少妇无套内谢久久久久 | 久久人人爽人人爽人人片av高清 | 偷窥日本少妇撒尿chinese | 51国偷自产一区二区三区 | 一区二区三区高清视频一 | 欧美成人高清在线播放 | 久久99国产综合精品 | 人妻少妇精品视频专区 | 亚洲精品一区二区三区四区五区 | 玩弄中年熟妇正在播放 | 一本久久伊人热热精品中文字幕 | 日日鲁鲁鲁夜夜爽爽狠狠 |