泡泡一分钟:BLVD: Building A Large-scale 5D Semantics Benchmark for Autonomous Driving
BLVD: Building A Large-scale 5D Semantics Benchmark for Autonomous Driving
BLVD:構建自主駕駛的大規模5D語義基準
Jianru Xue, Jianwu Fang, Tao Li, Bohua Zhang, Pu Zhang, Zhen Ye and Jian Dou
Abstract—In autonomous driving community, numerous benchmarks have been established to assist the tasks of 3D/2D object detection, stereo vision, semantic/instance segmentation. However, the more meaningful dynamic evolution of the surrounding objects of ego-vehicle is rarely exploited, and lacks a large-scale dataset platform. To address this, we introduce BLVD, a large-scale 5D semantics benchmark which does not concentrate on the static detection or semantic/instance segmentation tasks tackled adequately before. Instead, BLVD aims to provide a platform for the tasks of dynamic 4D (3D+temporal) tracking, 5D (4D+interactive) interactive event recognition and intention prediction.This benchmark will boost the deeper understanding of traf?c scenes than ever before. We totally yield 249,129 3D annotations, 4,902 independent individuals for tracking with the length of overall 214,922 points, 6,004 valid fragments for 5D interactive event recognition, and 4,900 individuals for 5D intention prediction. These tasks are contained in four kinds of scenarios depending on the object density (low and high) and light conditions (daytime and nighttime). The benchmark can be downloaded from our project site https://github.com/VCCIV/BLVD/.
在自動駕駛社區中,已經建立了許多基準來輔助3D / 2D物體檢測,立體視覺,語義/實例分割的任務。然而,自我車輛周圍物體的更有意義的動態演化很少被利用,并且缺乏大規模的數據集平臺。為了解決這個問題,我們引入了BLVD,這是一個大規模的5D語義基準測試,它不專注于之前充分處理的靜態檢測或語義/實例分割任務。相反,BLVD旨在為動態4D(3D +時間)跟蹤,5D(4D +交互式)交互式事件識別和意圖預測的任務提供平臺。該基準將比以往更加深入地了解交通場景。 我們完全產生249,129個3D注釋,4,902個獨立個體用于跟蹤,總長度為214,922個點,6,004個有效片段用于5D交互事件識別,4,900個用于5D意圖預測。這些任務包含在四種場景中,具體取決于對象密度(低和高)和光照條件(白天和夜晚)。 基準測試可以從我們的項目站點https://github.com/VCCIV/BLVD/下載。
在本文中,我們為自動駕駛構建了一個大規模的5D語義基準,該基準在各種有趣的場景下被捕獲,并且經過有效和準確的校準,同步和整流。與以前的靜態檢測/分割任務不同,我們專注于對交通場景的更深入理解。具體而言,4D跟蹤,5D交互事件識別和5D意圖預測的任務在該基準測試中啟動。通過仔細的注釋,基準產生了249,129個3D注釋,4,902個獨立實例用于跟蹤,總長度為214,922個點,6,004個用于5D交互式事件識別的3D注釋,以及4,900個用于5D意圖預測的個體。這些注釋是在不同的光照條件下(白天和夜晚),不同密度的參與者(低密度和高密度)和不同的駕駛場景(高速公路和城市)收集的。
?
轉載于:https://www.cnblogs.com/feifanrensheng/p/11368354.html
總結
以上是生活随笔為你收集整理的泡泡一分钟:BLVD: Building A Large-scale 5D Semantics Benchmark for Autonomous Driving的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 【宋红康 MySQL数据库 】【高级篇】
- 下一篇: 微观:心流,宏观:ikigai