自然数幂和伯努利数(Bernoulli)
二項式定理求自然數冪和
由二項式定理展開得
\[ (n+1)^{k+1}-n^{k+1}=\binom {k+1}1n^k+\binom {k+1}2n^{k-1}+\cdots+\binom {k+1}kn+1 \]
那么,對于所有的\(n=1,2,3,\cdots\)累加得到
\[ (n+1)^{k+1}-1=\binom{k+1}1\sum_{i=1}^ni^k+\binom{k+1}2\sum_{i=1}^ni^{k-1}+\cdots+\binom {k+1}k\sum_{i=1}^ni+n \]
進一步得到
\[ \sum_{i=1}^ni^k=\frac1{k+1}[(n+1)^{k+1}-(\binom{k+1}2\sum_{i=1}^ni^{k-1}+\cdots+\binom {k+1}k\sum_{i=1}^ni+n+1)] \]
計\(S(n,k)=\sum_{i=1}^ni^k\),可以得到
\[ S(n,k)=\frac1{k+1}[(n+1)^{k+1}-(\binom{k+1}2S(n,k-1)+\cdots+\binom {k+1}kS(n,1)+n+1)] \]
當\(k==1\),有\(S(n,1)=\frac{n\cdot(n+1)}{2}\)。
加入記憶化即可。
伯努利數
\[ \sum_{i=1}^ni^k=\frac{1}{k+1}\sum_{i=1}^{k+1}\binom {k+1}iB_{k+1-i}(n+1)^i \]
伯努利數滿足\(B_0=1\),且有
\[ \sum_{k=0}^n\binom{n+1}kB_k=0 \]
那么有
\[ B_n=-\frac1{n+1}(\binom{n+1}0B_0+\binom{n+1}1B_1+\dots+\binom{n+1}{n-1}B_{n-1}) \]
這樣就可以\(O(n^2)\)預處理出伯努利數。
還可以對\(B_i\)構建指數型生成函數
\[ B(x)=\sum_{i=0}^\infty \frac{B_i}{i!}x^i \]
經過我也不懂得化簡得到
\[ \begin{split} B(x)=\frac{x}{e^x-1}\\ B[x]=ifac[x+1] \end{split} \]
可以利用多項式求逆在\(O(n\log n)\)計算伯努利數。
例題 51nod 1228 序列求和
#include<iostream> #include<cstring> #include<cmath> #include<algorithm> #include<cstdio> #include<iomanip> #include<cstdlib> #define MAXN 0x7fffffff typedef long long LL; const int N=10005,K=2005,mod=1e9+7; using namespace std; inline LL Getint(){register LL x=0,f=1;register char ch=getchar();while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}return x*f;} int inv[N],fac[N],ifac[N],B[N]; int C(int n,int m){if(n<m)return 0;return (LL)fac[n]*ifac[m]%mod*ifac[n-m]%mod; } int S(LL n,int k){int ret=0;LL ori=(n+1)%mod,fac=ori;for(int i=1;i<=k+1;i++,fac=(LL)fac*ori%mod)ret=(ret+(LL)C(k+1,i)*B[k+1-i]%mod*fac)%mod;return (LL)(ret+mod)%mod*inv[k+1]%mod; } int main(){inv[1]=fac[0]=ifac[0]=1;for(int i=2;i<=K;i++)inv[i]=(LL)inv[mod%i]*(mod-mod/i)%mod;for(int i=1;i<=K;i++)fac[i]=(LL)fac[i-1]*i%mod;for(int i=1;i<=K;i++)ifac[i]=(LL)ifac[i-1]*inv[i]%mod;B[0]=1;for(int i=1;i<=K;i++){for(int j=0;j<i;j++)B[i]=(B[i]-(LL)B[j]*C(i+1,j))%mod;B[i]=(LL)B[i]*inv[i+1]%mod;}int T=Getint();while(T--){LL n=Getint(),k=Getint();cout<<S(n,k)<<'\n';}return 0; }轉載于:https://www.cnblogs.com/Emiya-wjk/p/10216170.html
總結
以上是生活随笔為你收集整理的自然数幂和伯努利数(Bernoulli)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: simulink中 Bernoulli
- 下一篇: arm 芯片型号 汇总