3atv精品不卡视频,97人人超碰国产精品最新,中文字幕av一区二区三区人妻少妇,久久久精品波多野结衣,日韩一区二区三区精品

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

[Watermelon_book] Chapter 3 Linear Model

發(fā)布時間:2023/12/14 编程问答 25 豆豆
生活随笔 收集整理的這篇文章主要介紹了 [Watermelon_book] Chapter 3 Linear Model 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

  • Linear Model
    • 基本定義
    • 線性模型簡單形式的實際編碼
      • Task
      • Generate data
      • Cost function
      • Gradient descent
      • Training
      • Model evaluation
        • Experiment 1
        • Experiment 2
      • Task 2
      • Generate data
      • Normalization
      • Prediction format
      • Cost function
      • Gradient descent
      • Training
      • Model evaluation
    • 由回歸到分類
    • Logistic Regression ( Binary Classification)的實際編碼
      • Dataset
      • Visulization
      • Prediction Format
      • Cost function
      • Gradient descent
      • Training
      • Model evaluation
        • Visulization
        • Mapping probabilities to classes

Linear Model

基本定義


線性模型簡單形式的實際編碼

Task

We have derived the formula of Linear Model, here I want to write codes for it by hand. The specific task is to predict sales based on radios shown as the table below.
The original problem is from https://ml-cheatsheet.readthedocs.io/en/latest/linear_regression.html

CompanyRadio($)Sales
Amazon37.822.1
Google39.310.4

Generate data

import numpy as np import scipy import seaborn as sns import matplotlib.pyplot as plt sample_size = 200 np.random.seed(5) radio_sample = 60 * np.random.rand(sample_size) weight_truth = 0.4 bias_truth = -3 np.random.seed(10) nosie_sample = 10 * (np.random.normal(0, 0.1, sample_size)) sales_sample = radio_sample * weight_truth + bias_truth + nosie_sample sales_no_noise = radio_sample * weight_truth + bias_truth plt.scatter(radio_sample, sales_sample, alpha=0.5) plt.plot(radio_sample, sales_no_noise, c="r") plt.xlabel("radio") plt.ylabel("sales") Text(0, 0.5, 'sales')

Cost function

f(m,b)=1N∑i=1n(yi?(mxi+b))2f(m, b)=\frac{1}{N} \sum_{i=1}^{n}\left(y_{i}-\left(m x_{i}+b\right)\right)^{2}f(m,b)=N1?i=1n?(yi??(mxi?+b))2

def cost_function(radio, sales, weight, bias):'''cost_function for linear modelArgs: radio,sales: is numpy arrayweight,bias: is scalar'''sample_size = len(radio)error = 0.0for i in range(sample_size):error += (sales[i] - (radio[i]*weight + bias))**2error_avg = error/sample_sizereturn error_avg

Gradient descent

\begin{aligned} f^{\prime}(m, b)=\left[ \begin{array}{c}{\frac{d f}{d m}} \ {\frac{d f}{d b}}\end{array}\right] &=\left[ \begin{array}{c}{\frac{1}{N} \sum-2 x_{i}\left(y_{i}-\left(m x_{i}+b\right)\right)} \ {\frac{1}{N} \sum-2\left(y_{i}-\left(m x_{i}+b\right)\right)}\end{array}\right] \end{aligned}

def update_weight(radio, sales, weight, bias, learning_rate):# initial valueweight_deriv = 0bias_deriv = 0sample_size = len(radio)for i in range(sample_size):# calculate partial derivativesweight_deriv += -2*radio[i]*(sales[i] - (weight*radio[i] + bias))bias_deriv += -2*(sales[i] - (weight*radio[i] + bias))#gradient descentweight = weight - (weight_deriv/sample_size)*learning_ratebias = bias - (bias_deriv/sample_size)*learning_ratereturn weight,bias

Training

def train(radio, sales, weight, bias, learning_rate, iters):cost_history = []for i in range(iters):weight, bias = update_weight(radio, sales, weight, bias, learning_rate)cost = cost_function(radio, sales, weight, bias)cost_history.append(cost)if i % 5 == 0:print("Iter: %d \t Weight: %2f \t Bias: %2f \t Cost: %4f" %(i,weight, bias, cost))return weight, bias, cost_history

Model evaluation

Experiment 1

weight_final, bias_final, cost_history = train(radio_sample, sales_sample, 0, 0, 0.0001, 2000) Iter: 0 Weight: 0.080657 Bias: 0.001851 Cost: 77.703045 Iter: 5 Weight: 0.267103 Bias: 0.005752 Cost: 7.320940 Iter: 10 Weight: 0.312288 Bias: 0.006165 Cost: 3.188519 Iter: 15 Weight: 0.323249 Bias: 0.005734 Cost: 2.945016 Iter: 20 Weight: 0.325918 Bias: 0.005099 Cost: 2.929796 Iter: 25 Weight: 0.326578 Bias: 0.004414 Cost: 2.927978 Iter: 30 Weight: 0.326751 Bias: 0.003717 Cost: 2.926946 Iter: 35 Weight: 0.326806 Bias: 0.003017 Cost: 2.925961 Iter: 40 Weight: 0.326832 Bias: 0.002317 Cost: 2.924980 Iter: 45 Weight: 0.326852 Bias: 0.001617 Cost: 2.923999 Iter: 50 Weight: 0.326869 Bias: 0.000917 Cost: 2.923018 Iter: 55 Weight: 0.326887 Bias: 0.000217 Cost: 2.922038 Iter: 60 Weight: 0.326904 Bias: -0.000482 Cost: 2.921058 Iter: 65 Weight: 0.326921 Bias: -0.001182 Cost: 2.920079 Iter: 70 Weight: 0.326939 Bias: -0.001881 Cost: 2.919101 Iter: 75 Weight: 0.326956 Bias: -0.002580 Cost: 2.918123 Iter: 80 Weight: 0.326973 Bias: -0.003279 Cost: 2.917145 Iter: 85 Weight: 0.326990 Bias: -0.003978 Cost: 2.916168 Iter: 90 Weight: 0.327008 Bias: -0.004677 Cost: 2.915191 Iter: 95 Weight: 0.327025 Bias: -0.005375 Cost: 2.914215 Iter: 100 Weight: 0.327042 Bias: -0.006073 Cost: 2.913240 Iter: 105 Weight: 0.327059 Bias: -0.006771 Cost: 2.912264 Iter: 110 Weight: 0.327077 Bias: -0.007469 Cost: 2.911290 Iter: 115 Weight: 0.327094 Bias: -0.008167 Cost: 2.910315 Iter: 120 Weight: 0.327111 Bias: -0.008864 Cost: 2.909342 Iter: 125 Weight: 0.327128 Bias: -0.009562 Cost: 2.908368 Iter: 130 Weight: 0.327145 Bias: -0.010259 Cost: 2.907396 Iter: 135 Weight: 0.327163 Bias: -0.010956 Cost: 2.906423 Iter: 140 Weight: 0.327180 Bias: -0.011653 Cost: 2.905452 Iter: 145 Weight: 0.327197 Bias: -0.012350 Cost: 2.904480 Iter: 150 Weight: 0.327214 Bias: -0.013046 Cost: 2.903509 Iter: 155 Weight: 0.327231 Bias: -0.013742 Cost: 2.902539 Iter: 160 Weight: 0.327249 Bias: -0.014439 Cost: 2.901569 Iter: 165 Weight: 0.327266 Bias: -0.015135 Cost: 2.900600 Iter: 170 Weight: 0.327283 Bias: -0.015830 Cost: 2.899631 Iter: 175 Weight: 0.327300 Bias: -0.016526 Cost: 2.898663 Iter: 180 Weight: 0.327317 Bias: -0.017222 Cost: 2.897695 Iter: 185 Weight: 0.327335 Bias: -0.017917 Cost: 2.896727 Iter: 190 Weight: 0.327352 Bias: -0.018612 Cost: 2.895760 Iter: 195 Weight: 0.327369 Bias: -0.019307 Cost: 2.894794 Iter: 200 Weight: 0.327386 Bias: -0.020002 Cost: 2.893828 Iter: 205 Weight: 0.327403 Bias: -0.020696 Cost: 2.892862 Iter: 210 Weight: 0.327420 Bias: -0.021391 Cost: 2.891897 Iter: 215 Weight: 0.327437 Bias: -0.022085 Cost: 2.890932 Iter: 220 Weight: 0.327455 Bias: -0.022779 Cost: 2.889968 Iter: 225 Weight: 0.327472 Bias: -0.023473 Cost: 2.889005 Iter: 230 Weight: 0.327489 Bias: -0.024167 Cost: 2.888042 Iter: 235 Weight: 0.327506 Bias: -0.024860 Cost: 2.887079 Iter: 240 Weight: 0.327523 Bias: -0.025554 Cost: 2.886117 Iter: 245 Weight: 0.327540 Bias: -0.026247 Cost: 2.885155 Iter: 250 Weight: 0.327557 Bias: -0.026940 Cost: 2.884194 Iter: 255 Weight: 0.327574 Bias: -0.027633 Cost: 2.883233 Iter: 260 Weight: 0.327592 Bias: -0.028326 Cost: 2.882273 Iter: 265 Weight: 0.327609 Bias: -0.029018 Cost: 2.881313 Iter: 270 Weight: 0.327626 Bias: -0.029711 Cost: 2.880354 Iter: 275 Weight: 0.327643 Bias: -0.030403 Cost: 2.879395 Iter: 280 Weight: 0.327660 Bias: -0.031095 Cost: 2.878436 Iter: 285 Weight: 0.327677 Bias: -0.031787 Cost: 2.877479 Iter: 290 Weight: 0.327694 Bias: -0.032478 Cost: 2.876521 Iter: 295 Weight: 0.327711 Bias: -0.033170 Cost: 2.875564 Iter: 300 Weight: 0.327728 Bias: -0.033861 Cost: 2.874608 Iter: 305 Weight: 0.327745 Bias: -0.034552 Cost: 2.873652 Iter: 310 Weight: 0.327762 Bias: -0.035243 Cost: 2.872696 Iter: 315 Weight: 0.327779 Bias: -0.035934 Cost: 2.871741 Iter: 320 Weight: 0.327796 Bias: -0.036625 Cost: 2.870787 Iter: 325 Weight: 0.327813 Bias: -0.037315 Cost: 2.869832 Iter: 330 Weight: 0.327830 Bias: -0.038006 Cost: 2.868879 Iter: 335 Weight: 0.327848 Bias: -0.038696 Cost: 2.867926 Iter: 340 Weight: 0.327865 Bias: -0.039386 Cost: 2.866973 Iter: 345 Weight: 0.327882 Bias: -0.040076 Cost: 2.866021 Iter: 350 Weight: 0.327899 Bias: -0.040765 Cost: 2.865069 Iter: 355 Weight: 0.327916 Bias: -0.041455 Cost: 2.864118 Iter: 360 Weight: 0.327933 Bias: -0.042144 Cost: 2.863167 Iter: 365 Weight: 0.327950 Bias: -0.042833 Cost: 2.862217 Iter: 370 Weight: 0.327967 Bias: -0.043522 Cost: 2.861267 Iter: 375 Weight: 0.327984 Bias: -0.044211 Cost: 2.860317 Iter: 380 Weight: 0.328001 Bias: -0.044899 Cost: 2.859369 Iter: 385 Weight: 0.328018 Bias: -0.045588 Cost: 2.858420 Iter: 390 Weight: 0.328035 Bias: -0.046276 Cost: 2.857472 Iter: 395 Weight: 0.328052 Bias: -0.046964 Cost: 2.856525 Iter: 400 Weight: 0.328069 Bias: -0.047652 Cost: 2.855578 Iter: 405 Weight: 0.328086 Bias: -0.048340 Cost: 2.854631 Iter: 410 Weight: 0.328103 Bias: -0.049028 Cost: 2.853685 Iter: 415 Weight: 0.328120 Bias: -0.049715 Cost: 2.852739 Iter: 420 Weight: 0.328137 Bias: -0.050402 Cost: 2.851794 Iter: 425 Weight: 0.328153 Bias: -0.051089 Cost: 2.850850 Iter: 430 Weight: 0.328170 Bias: -0.051776 Cost: 2.849905 Iter: 435 Weight: 0.328187 Bias: -0.052463 Cost: 2.848962 Iter: 440 Weight: 0.328204 Bias: -0.053149 Cost: 2.848018 Iter: 445 Weight: 0.328221 Bias: -0.053836 Cost: 2.847076 Iter: 450 Weight: 0.328238 Bias: -0.054522 Cost: 2.846133 Iter: 455 Weight: 0.328255 Bias: -0.055208 Cost: 2.845191 Iter: 460 Weight: 0.328272 Bias: -0.055894 Cost: 2.844250 Iter: 465 Weight: 0.328289 Bias: -0.056580 Cost: 2.843309 Iter: 470 Weight: 0.328306 Bias: -0.057265 Cost: 2.842369 Iter: 475 Weight: 0.328323 Bias: -0.057951 Cost: 2.841429 Iter: 480 Weight: 0.328340 Bias: -0.058636 Cost: 2.840489 Iter: 485 Weight: 0.328357 Bias: -0.059321 Cost: 2.839550 Iter: 490 Weight: 0.328374 Bias: -0.060006 Cost: 2.838611 Iter: 495 Weight: 0.328390 Bias: -0.060690 Cost: 2.837673 Iter: 500 Weight: 0.328407 Bias: -0.061375 Cost: 2.836736 Iter: 505 Weight: 0.328424 Bias: -0.062059 Cost: 2.835798 Iter: 510 Weight: 0.328441 Bias: -0.062743 Cost: 2.834862 Iter: 515 Weight: 0.328458 Bias: -0.063427 Cost: 2.833925 Iter: 520 Weight: 0.328475 Bias: -0.064111 Cost: 2.832990 Iter: 525 Weight: 0.328492 Bias: -0.064795 Cost: 2.832054 Iter: 530 Weight: 0.328509 Bias: -0.065478 Cost: 2.831119 Iter: 535 Weight: 0.328526 Bias: -0.066162 Cost: 2.830185 Iter: 540 Weight: 0.328542 Bias: -0.066845 Cost: 2.829251 Iter: 545 Weight: 0.328559 Bias: -0.067528 Cost: 2.828318 Iter: 550 Weight: 0.328576 Bias: -0.068211 Cost: 2.827385 Iter: 555 Weight: 0.328593 Bias: -0.068893 Cost: 2.826452 Iter: 560 Weight: 0.328610 Bias: -0.069576 Cost: 2.825520 Iter: 565 Weight: 0.328627 Bias: -0.070258 Cost: 2.824588 Iter: 570 Weight: 0.328644 Bias: -0.070940 Cost: 2.823657 Iter: 575 Weight: 0.328660 Bias: -0.071622 Cost: 2.822727 Iter: 580 Weight: 0.328677 Bias: -0.072304 Cost: 2.821796 Iter: 585 Weight: 0.328694 Bias: -0.072985 Cost: 2.820867 Iter: 590 Weight: 0.328711 Bias: -0.073667 Cost: 2.819937 Iter: 595 Weight: 0.328728 Bias: -0.074348 Cost: 2.819008 Iter: 600 Weight: 0.328744 Bias: -0.075029 Cost: 2.818080 Iter: 605 Weight: 0.328761 Bias: -0.075710 Cost: 2.817152 Iter: 610 Weight: 0.328778 Bias: -0.076391 Cost: 2.816225 Iter: 615 Weight: 0.328795 Bias: -0.077072 Cost: 2.815298 Iter: 620 Weight: 0.328812 Bias: -0.077752 Cost: 2.814371 Iter: 625 Weight: 0.328828 Bias: -0.078432 Cost: 2.813445 Iter: 630 Weight: 0.328845 Bias: -0.079113 Cost: 2.812519 Iter: 635 Weight: 0.328862 Bias: -0.079792 Cost: 2.811594 Iter: 640 Weight: 0.328879 Bias: -0.080472 Cost: 2.810669 Iter: 645 Weight: 0.328896 Bias: -0.081152 Cost: 2.809745 Iter: 650 Weight: 0.328912 Bias: -0.081831 Cost: 2.808821 Iter: 655 Weight: 0.328929 Bias: -0.082511 Cost: 2.807898 Iter: 660 Weight: 0.328946 Bias: -0.083190 Cost: 2.806975 Iter: 665 Weight: 0.328963 Bias: -0.083869 Cost: 2.806053 Iter: 670 Weight: 0.328979 Bias: -0.084547 Cost: 2.805131 Iter: 675 Weight: 0.328996 Bias: -0.085226 Cost: 2.804209 Iter: 680 Weight: 0.329013 Bias: -0.085904 Cost: 2.803288 Iter: 685 Weight: 0.329030 Bias: -0.086583 Cost: 2.802368 Iter: 690 Weight: 0.329046 Bias: -0.087261 Cost: 2.801447 Iter: 695 Weight: 0.329063 Bias: -0.087939 Cost: 2.800528 Iter: 700 Weight: 0.329080 Bias: -0.088616 Cost: 2.799609 Iter: 705 Weight: 0.329097 Bias: -0.089294 Cost: 2.798690 Iter: 710 Weight: 0.329113 Bias: -0.089971 Cost: 2.797772 Iter: 715 Weight: 0.329130 Bias: -0.090649 Cost: 2.796854 Iter: 720 Weight: 0.329147 Bias: -0.091326 Cost: 2.795936 Iter: 725 Weight: 0.329163 Bias: -0.092003 Cost: 2.795019 Iter: 730 Weight: 0.329180 Bias: -0.092679 Cost: 2.794103 Iter: 735 Weight: 0.329197 Bias: -0.093356 Cost: 2.793187 Iter: 740 Weight: 0.329214 Bias: -0.094032 Cost: 2.792271 Iter: 745 Weight: 0.329230 Bias: -0.094708 Cost: 2.791356 Iter: 750 Weight: 0.329247 Bias: -0.095385 Cost: 2.790442 Iter: 755 Weight: 0.329264 Bias: -0.096060 Cost: 2.789527 Iter: 760 Weight: 0.329280 Bias: -0.096736 Cost: 2.788614 Iter: 765 Weight: 0.329297 Bias: -0.097412 Cost: 2.787700 Iter: 770 Weight: 0.329314 Bias: -0.098087 Cost: 2.786787 Iter: 775 Weight: 0.329330 Bias: -0.098762 Cost: 2.785875 Iter: 780 Weight: 0.329347 Bias: -0.099437 Cost: 2.784963 Iter: 785 Weight: 0.329364 Bias: -0.100112 Cost: 2.784052 Iter: 790 Weight: 0.329380 Bias: -0.100787 Cost: 2.783141 Iter: 795 Weight: 0.329397 Bias: -0.101462 Cost: 2.782230 Iter: 800 Weight: 0.329414 Bias: -0.102136 Cost: 2.781320 Iter: 805 Weight: 0.329430 Bias: -0.102810 Cost: 2.780410 Iter: 810 Weight: 0.329447 Bias: -0.103484 Cost: 2.779501 Iter: 815 Weight: 0.329464 Bias: -0.104158 Cost: 2.778592 Iter: 820 Weight: 0.329480 Bias: -0.104832 Cost: 2.777684 Iter: 825 Weight: 0.329497 Bias: -0.105505 Cost: 2.776776 Iter: 830 Weight: 0.329513 Bias: -0.106179 Cost: 2.775869 Iter: 835 Weight: 0.329530 Bias: -0.106852 Cost: 2.774962 Iter: 840 Weight: 0.329547 Bias: -0.107525 Cost: 2.774055 Iter: 845 Weight: 0.329563 Bias: -0.108198 Cost: 2.773149 Iter: 850 Weight: 0.329580 Bias: -0.108871 Cost: 2.772243 Iter: 855 Weight: 0.329597 Bias: -0.109543 Cost: 2.771338 Iter: 860 Weight: 0.329613 Bias: -0.110216 Cost: 2.770433 Iter: 865 Weight: 0.329630 Bias: -0.110888 Cost: 2.769529 Iter: 870 Weight: 0.329646 Bias: -0.111560 Cost: 2.768625 Iter: 875 Weight: 0.329663 Bias: -0.112232 Cost: 2.767722 Iter: 880 Weight: 0.329679 Bias: -0.112903 Cost: 2.766819 Iter: 885 Weight: 0.329696 Bias: -0.113575 Cost: 2.765917 Iter: 890 Weight: 0.329713 Bias: -0.114246 Cost: 2.765015 Iter: 895 Weight: 0.329729 Bias: -0.114918 Cost: 2.764113 Iter: 900 Weight: 0.329746 Bias: -0.115589 Cost: 2.763212 Iter: 905 Weight: 0.329762 Bias: -0.116259 Cost: 2.762311 Iter: 910 Weight: 0.329779 Bias: -0.116930 Cost: 2.761411 Iter: 915 Weight: 0.329795 Bias: -0.117601 Cost: 2.760511 Iter: 920 Weight: 0.329812 Bias: -0.118271 Cost: 2.759612 Iter: 925 Weight: 0.329829 Bias: -0.118941 Cost: 2.758713 Iter: 930 Weight: 0.329845 Bias: -0.119611 Cost: 2.757814 Iter: 935 Weight: 0.329862 Bias: -0.120281 Cost: 2.756916 Iter: 940 Weight: 0.329878 Bias: -0.120951 Cost: 2.756019 Iter: 945 Weight: 0.329895 Bias: -0.121621 Cost: 2.755122 Iter: 950 Weight: 0.329911 Bias: -0.122290 Cost: 2.754225 Iter: 955 Weight: 0.329928 Bias: -0.122959 Cost: 2.753329 Iter: 960 Weight: 0.329944 Bias: -0.123628 Cost: 2.752433 Iter: 965 Weight: 0.329961 Bias: -0.124297 Cost: 2.751538 Iter: 970 Weight: 0.329977 Bias: -0.124966 Cost: 2.750643 Iter: 975 Weight: 0.329994 Bias: -0.125634 Cost: 2.749748 Iter: 980 Weight: 0.330010 Bias: -0.126303 Cost: 2.748854 Iter: 985 Weight: 0.330027 Bias: -0.126971 Cost: 2.747961 Iter: 990 Weight: 0.330043 Bias: -0.127639 Cost: 2.747068 Iter: 995 Weight: 0.330060 Bias: -0.128307 Cost: 2.746175 Iter: 1000 Weight: 0.330076 Bias: -0.128975 Cost: 2.745283 Iter: 1005 Weight: 0.330093 Bias: -0.129642 Cost: 2.744391 Iter: 1010 Weight: 0.330109 Bias: -0.130310 Cost: 2.743500 Iter: 1015 Weight: 0.330126 Bias: -0.130977 Cost: 2.742609 Iter: 1020 Weight: 0.330142 Bias: -0.131644 Cost: 2.741718 Iter: 1025 Weight: 0.330159 Bias: -0.132311 Cost: 2.740828 Iter: 1030 Weight: 0.330175 Bias: -0.132977 Cost: 2.739939 Iter: 1035 Weight: 0.330191 Bias: -0.133644 Cost: 2.739050 Iter: 1040 Weight: 0.330208 Bias: -0.134310 Cost: 2.738161 Iter: 1045 Weight: 0.330224 Bias: -0.134977 Cost: 2.737273 Iter: 1050 Weight: 0.330241 Bias: -0.135643 Cost: 2.736385 Iter: 1055 Weight: 0.330257 Bias: -0.136309 Cost: 2.735497 Iter: 1060 Weight: 0.330274 Bias: -0.136974 Cost: 2.734610 Iter: 1065 Weight: 0.330290 Bias: -0.137640 Cost: 2.733724 Iter: 1070 Weight: 0.330307 Bias: -0.138305 Cost: 2.732838 Iter: 1075 Weight: 0.330323 Bias: -0.138971 Cost: 2.731952 Iter: 1080 Weight: 0.330339 Bias: -0.139636 Cost: 2.731067 Iter: 1085 Weight: 0.330356 Bias: -0.140301 Cost: 2.730182 Iter: 1090 Weight: 0.330372 Bias: -0.140965 Cost: 2.729298 Iter: 1095 Weight: 0.330389 Bias: -0.141630 Cost: 2.728414 Iter: 1100 Weight: 0.330405 Bias: -0.142294 Cost: 2.727531 Iter: 1105 Weight: 0.330421 Bias: -0.142959 Cost: 2.726648 Iter: 1110 Weight: 0.330438 Bias: -0.143623 Cost: 2.725765 Iter: 1115 Weight: 0.330454 Bias: -0.144287 Cost: 2.724883 Iter: 1120 Weight: 0.330471 Bias: -0.144950 Cost: 2.724002 Iter: 1125 Weight: 0.330487 Bias: -0.145614 Cost: 2.723120 Iter: 1130 Weight: 0.330503 Bias: -0.146277 Cost: 2.722240 Iter: 1135 Weight: 0.330520 Bias: -0.146941 Cost: 2.721359 Iter: 1140 Weight: 0.330536 Bias: -0.147604 Cost: 2.720479 Iter: 1145 Weight: 0.330552 Bias: -0.148267 Cost: 2.719600 Iter: 1150 Weight: 0.330569 Bias: -0.148929 Cost: 2.718721 Iter: 1155 Weight: 0.330585 Bias: -0.149592 Cost: 2.717842 Iter: 1160 Weight: 0.330602 Bias: -0.150254 Cost: 2.716964 Iter: 1165 Weight: 0.330618 Bias: -0.150917 Cost: 2.716086 Iter: 1170 Weight: 0.330634 Bias: -0.151579 Cost: 2.715209 Iter: 1175 Weight: 0.330651 Bias: -0.152241 Cost: 2.714332 Iter: 1180 Weight: 0.330667 Bias: -0.152903 Cost: 2.713456 Iter: 1185 Weight: 0.330683 Bias: -0.153564 Cost: 2.712580 Iter: 1190 Weight: 0.330700 Bias: -0.154226 Cost: 2.711704 Iter: 1195 Weight: 0.330716 Bias: -0.154887 Cost: 2.710829 Iter: 1200 Weight: 0.330732 Bias: -0.155548 Cost: 2.709955 Iter: 1205 Weight: 0.330749 Bias: -0.156209 Cost: 2.709080 Iter: 1210 Weight: 0.330765 Bias: -0.156870 Cost: 2.708206 Iter: 1215 Weight: 0.330781 Bias: -0.157530 Cost: 2.707333 Iter: 1220 Weight: 0.330797 Bias: -0.158191 Cost: 2.706460 Iter: 1225 Weight: 0.330814 Bias: -0.158851 Cost: 2.705588 Iter: 1230 Weight: 0.330830 Bias: -0.159511 Cost: 2.704716 Iter: 1235 Weight: 0.330846 Bias: -0.160171 Cost: 2.703844 Iter: 1240 Weight: 0.330863 Bias: -0.160831 Cost: 2.702973 Iter: 1245 Weight: 0.330879 Bias: -0.161491 Cost: 2.702102 Iter: 1250 Weight: 0.330895 Bias: -0.162150 Cost: 2.701232 Iter: 1255 Weight: 0.330911 Bias: -0.162810 Cost: 2.700362 Iter: 1260 Weight: 0.330928 Bias: -0.163469 Cost: 2.699492 Iter: 1265 Weight: 0.330944 Bias: -0.164128 Cost: 2.698623 Iter: 1270 Weight: 0.330960 Bias: -0.164787 Cost: 2.697755 Iter: 1275 Weight: 0.330977 Bias: -0.165445 Cost: 2.696886 Iter: 1280 Weight: 0.330993 Bias: -0.166104 Cost: 2.696019 Iter: 1285 Weight: 0.331009 Bias: -0.166762 Cost: 2.695151 Iter: 1290 Weight: 0.331025 Bias: -0.167420 Cost: 2.694284 Iter: 1295 Weight: 0.331042 Bias: -0.168078 Cost: 2.693418 Iter: 1300 Weight: 0.331058 Bias: -0.168736 Cost: 2.692552 Iter: 1305 Weight: 0.331074 Bias: -0.169394 Cost: 2.691686 Iter: 1310 Weight: 0.331090 Bias: -0.170051 Cost: 2.690821 Iter: 1315 Weight: 0.331107 Bias: -0.170709 Cost: 2.689956 Iter: 1320 Weight: 0.331123 Bias: -0.171366 Cost: 2.689092 Iter: 1325 Weight: 0.331139 Bias: -0.172023 Cost: 2.688228 Iter: 1330 Weight: 0.331155 Bias: -0.172680 Cost: 2.687365 Iter: 1335 Weight: 0.331171 Bias: -0.173336 Cost: 2.686502 Iter: 1340 Weight: 0.331188 Bias: -0.173993 Cost: 2.685639 Iter: 1345 Weight: 0.331204 Bias: -0.174649 Cost: 2.684777 Iter: 1350 Weight: 0.331220 Bias: -0.175306 Cost: 2.683915 Iter: 1355 Weight: 0.331236 Bias: -0.175962 Cost: 2.683054 Iter: 1360 Weight: 0.331252 Bias: -0.176618 Cost: 2.682193 Iter: 1365 Weight: 0.331269 Bias: -0.177273 Cost: 2.681332 Iter: 1370 Weight: 0.331285 Bias: -0.177929 Cost: 2.680472 Iter: 1375 Weight: 0.331301 Bias: -0.178584 Cost: 2.679613 Iter: 1380 Weight: 0.331317 Bias: -0.179239 Cost: 2.678754 Iter: 1385 Weight: 0.331333 Bias: -0.179895 Cost: 2.677895 Iter: 1390 Weight: 0.331349 Bias: -0.180549 Cost: 2.677037 Iter: 1395 Weight: 0.331366 Bias: -0.181204 Cost: 2.676179 Iter: 1400 Weight: 0.331382 Bias: -0.181859 Cost: 2.675321 Iter: 1405 Weight: 0.331398 Bias: -0.182513 Cost: 2.674464 Iter: 1410 Weight: 0.331414 Bias: -0.183167 Cost: 2.673607 Iter: 1415 Weight: 0.331430 Bias: -0.183822 Cost: 2.672751 Iter: 1420 Weight: 0.331446 Bias: -0.184476 Cost: 2.671896 Iter: 1425 Weight: 0.331463 Bias: -0.185129 Cost: 2.671040 Iter: 1430 Weight: 0.331479 Bias: -0.185783 Cost: 2.670185 Iter: 1435 Weight: 0.331495 Bias: -0.186436 Cost: 2.669331 Iter: 1440 Weight: 0.331511 Bias: -0.187090 Cost: 2.668477 Iter: 1445 Weight: 0.331527 Bias: -0.187743 Cost: 2.667623 Iter: 1450 Weight: 0.331543 Bias: -0.188396 Cost: 2.666770 Iter: 1455 Weight: 0.331559 Bias: -0.189049 Cost: 2.665917 Iter: 1460 Weight: 0.331575 Bias: -0.189701 Cost: 2.665065 Iter: 1465 Weight: 0.331591 Bias: -0.190354 Cost: 2.664213 Iter: 1470 Weight: 0.331608 Bias: -0.191006 Cost: 2.663361 Iter: 1475 Weight: 0.331624 Bias: -0.191658 Cost: 2.662510 Iter: 1480 Weight: 0.331640 Bias: -0.192310 Cost: 2.661659 Iter: 1485 Weight: 0.331656 Bias: -0.192962 Cost: 2.660809 Iter: 1490 Weight: 0.331672 Bias: -0.193614 Cost: 2.659959 Iter: 1495 Weight: 0.331688 Bias: -0.194265 Cost: 2.659110 Iter: 1500 Weight: 0.331704 Bias: -0.194917 Cost: 2.658261 Iter: 1505 Weight: 0.331720 Bias: -0.195568 Cost: 2.657412 Iter: 1510 Weight: 0.331736 Bias: -0.196219 Cost: 2.656564 Iter: 1515 Weight: 0.331752 Bias: -0.196870 Cost: 2.655716 Iter: 1520 Weight: 0.331768 Bias: -0.197520 Cost: 2.654869 Iter: 1525 Weight: 0.331784 Bias: -0.198171 Cost: 2.654022 Iter: 1530 Weight: 0.331801 Bias: -0.198821 Cost: 2.653176 Iter: 1535 Weight: 0.331817 Bias: -0.199471 Cost: 2.652330 Iter: 1540 Weight: 0.331833 Bias: -0.200121 Cost: 2.651484 Iter: 1545 Weight: 0.331849 Bias: -0.200771 Cost: 2.650639 Iter: 1550 Weight: 0.331865 Bias: -0.201421 Cost: 2.649794 Iter: 1555 Weight: 0.331881 Bias: -0.202071 Cost: 2.648950 Iter: 1560 Weight: 0.331897 Bias: -0.202720 Cost: 2.648106 Iter: 1565 Weight: 0.331913 Bias: -0.203369 Cost: 2.647262 Iter: 1570 Weight: 0.331929 Bias: -0.204018 Cost: 2.646419 Iter: 1575 Weight: 0.331945 Bias: -0.204667 Cost: 2.645576 Iter: 1580 Weight: 0.331961 Bias: -0.205316 Cost: 2.644734 Iter: 1585 Weight: 0.331977 Bias: -0.205965 Cost: 2.643892 Iter: 1590 Weight: 0.331993 Bias: -0.206613 Cost: 2.643051 Iter: 1595 Weight: 0.332009 Bias: -0.207261 Cost: 2.642210 Iter: 1600 Weight: 0.332025 Bias: -0.207910 Cost: 2.641369 Iter: 1605 Weight: 0.332041 Bias: -0.208557 Cost: 2.640529 Iter: 1610 Weight: 0.332057 Bias: -0.209205 Cost: 2.639689 Iter: 1615 Weight: 0.332073 Bias: -0.209853 Cost: 2.638850 Iter: 1620 Weight: 0.332089 Bias: -0.210500 Cost: 2.638011 Iter: 1625 Weight: 0.332105 Bias: -0.211148 Cost: 2.637172 Iter: 1630 Weight: 0.332121 Bias: -0.211795 Cost: 2.636334 Iter: 1635 Weight: 0.332137 Bias: -0.212442 Cost: 2.635496 Iter: 1640 Weight: 0.332153 Bias: -0.213089 Cost: 2.634659 Iter: 1645 Weight: 0.332169 Bias: -0.213735 Cost: 2.633822 Iter: 1650 Weight: 0.332185 Bias: -0.214382 Cost: 2.632986 Iter: 1655 Weight: 0.332201 Bias: -0.215028 Cost: 2.632150 Iter: 1660 Weight: 0.332217 Bias: -0.215674 Cost: 2.631314 Iter: 1665 Weight: 0.332233 Bias: -0.216320 Cost: 2.630479 Iter: 1670 Weight: 0.332248 Bias: -0.216966 Cost: 2.629644 Iter: 1675 Weight: 0.332264 Bias: -0.217612 Cost: 2.628810 Iter: 1680 Weight: 0.332280 Bias: -0.218258 Cost: 2.627976 Iter: 1685 Weight: 0.332296 Bias: -0.218903 Cost: 2.627142 Iter: 1690 Weight: 0.332312 Bias: -0.219548 Cost: 2.626309 Iter: 1695 Weight: 0.332328 Bias: -0.220193 Cost: 2.625477 Iter: 1700 Weight: 0.332344 Bias: -0.220838 Cost: 2.624644 Iter: 1705 Weight: 0.332360 Bias: -0.221483 Cost: 2.623812 Iter: 1710 Weight: 0.332376 Bias: -0.222128 Cost: 2.622981 Iter: 1715 Weight: 0.332392 Bias: -0.222772 Cost: 2.622150 Iter: 1720 Weight: 0.332408 Bias: -0.223416 Cost: 2.621319 Iter: 1725 Weight: 0.332424 Bias: -0.224060 Cost: 2.620489 Iter: 1730 Weight: 0.332439 Bias: -0.224704 Cost: 2.619659 Iter: 1735 Weight: 0.332455 Bias: -0.225348 Cost: 2.618830 Iter: 1740 Weight: 0.332471 Bias: -0.225992 Cost: 2.618001 Iter: 1745 Weight: 0.332487 Bias: -0.226635 Cost: 2.617172 Iter: 1750 Weight: 0.332503 Bias: -0.227278 Cost: 2.616344 Iter: 1755 Weight: 0.332519 Bias: -0.227922 Cost: 2.615516 Iter: 1760 Weight: 0.332535 Bias: -0.228565 Cost: 2.614689 Iter: 1765 Weight: 0.332551 Bias: -0.229207 Cost: 2.613862 Iter: 1770 Weight: 0.332567 Bias: -0.229850 Cost: 2.613035 Iter: 1775 Weight: 0.332582 Bias: -0.230493 Cost: 2.612209 Iter: 1780 Weight: 0.332598 Bias: -0.231135 Cost: 2.611383 Iter: 1785 Weight: 0.332614 Bias: -0.231777 Cost: 2.610558 Iter: 1790 Weight: 0.332630 Bias: -0.232419 Cost: 2.609733 Iter: 1795 Weight: 0.332646 Bias: -0.233061 Cost: 2.608909 Iter: 1800 Weight: 0.332662 Bias: -0.233703 Cost: 2.608085 Iter: 1805 Weight: 0.332677 Bias: -0.234344 Cost: 2.607261 Iter: 1810 Weight: 0.332693 Bias: -0.234986 Cost: 2.606438 Iter: 1815 Weight: 0.332709 Bias: -0.235627 Cost: 2.605615 Iter: 1820 Weight: 0.332725 Bias: -0.236268 Cost: 2.604793 Iter: 1825 Weight: 0.332741 Bias: -0.236909 Cost: 2.603970 Iter: 1830 Weight: 0.332757 Bias: -0.237550 Cost: 2.603149 Iter: 1835 Weight: 0.332772 Bias: -0.238190 Cost: 2.602328 Iter: 1840 Weight: 0.332788 Bias: -0.238831 Cost: 2.601507 Iter: 1845 Weight: 0.332804 Bias: -0.239471 Cost: 2.600686 Iter: 1850 Weight: 0.332820 Bias: -0.240111 Cost: 2.599866 Iter: 1855 Weight: 0.332836 Bias: -0.240751 Cost: 2.599047 Iter: 1860 Weight: 0.332851 Bias: -0.241391 Cost: 2.598228 Iter: 1865 Weight: 0.332867 Bias: -0.242031 Cost: 2.597409 Iter: 1870 Weight: 0.332883 Bias: -0.242670 Cost: 2.596591 Iter: 1875 Weight: 0.332899 Bias: -0.243309 Cost: 2.595773 Iter: 1880 Weight: 0.332915 Bias: -0.243949 Cost: 2.594955 Iter: 1885 Weight: 0.332930 Bias: -0.244588 Cost: 2.594138 Iter: 1890 Weight: 0.332946 Bias: -0.245226 Cost: 2.593321 Iter: 1895 Weight: 0.332962 Bias: -0.245865 Cost: 2.592505 Iter: 1900 Weight: 0.332978 Bias: -0.246504 Cost: 2.591689 Iter: 1905 Weight: 0.332993 Bias: -0.247142 Cost: 2.590873 Iter: 1910 Weight: 0.333009 Bias: -0.247780 Cost: 2.590058 Iter: 1915 Weight: 0.333025 Bias: -0.248418 Cost: 2.589244 Iter: 1920 Weight: 0.333041 Bias: -0.249056 Cost: 2.588429 Iter: 1925 Weight: 0.333056 Bias: -0.249694 Cost: 2.587615 Iter: 1930 Weight: 0.333072 Bias: -0.250332 Cost: 2.586802 Iter: 1935 Weight: 0.333088 Bias: -0.250969 Cost: 2.585989 Iter: 1940 Weight: 0.333104 Bias: -0.251606 Cost: 2.585176 Iter: 1945 Weight: 0.333119 Bias: -0.252243 Cost: 2.584364 Iter: 1950 Weight: 0.333135 Bias: -0.252880 Cost: 2.583552 Iter: 1955 Weight: 0.333151 Bias: -0.253517 Cost: 2.582740 Iter: 1960 Weight: 0.333167 Bias: -0.254154 Cost: 2.581929 Iter: 1965 Weight: 0.333182 Bias: -0.254790 Cost: 2.581119 Iter: 1970 Weight: 0.333198 Bias: -0.255426 Cost: 2.580308 Iter: 1975 Weight: 0.333214 Bias: -0.256063 Cost: 2.579498 Iter: 1980 Weight: 0.333229 Bias: -0.256699 Cost: 2.578689 Iter: 1985 Weight: 0.333245 Bias: -0.257335 Cost: 2.577880 Iter: 1990 Weight: 0.333261 Bias: -0.257970 Cost: 2.577071 Iter: 1995 Weight: 0.333276 Bias: -0.258606 Cost: 2.576263 iters = np.arange(2000) plt.plot(iters, cost_history) [<matplotlib.lines.Line2D at 0x7fb27cf937f0>]

We can see, based on the initial weight=0,bias=0, learning_rate=0.0001,the cost value decrease sharply.

sales_predict = weight_final*radio_sample + bias_final plt.scatter(radio_sample, sales_sample, alpha=0.5) plt.plot(radio_sample, sales_predict, c="r") plt.xlabel("radio") plt.ylabel("sales") Text(0, 0.5, 'sales')

Experiment 2

In the last experiment, we set four hyperparameters manually which are w, b, l and i. Let’s change them and see what happen.

weight_final, bias_final, cost_history = train(radio_sample, sales_sample, -1000, 0, 0.0001, 2000) Iter: 0 Weight: -753.190221 Bias: 6.091610 Cost: 700169768.718390 Iter: 5 Weight: -182.698756 Bias: 20.168463 Cost: 41100789.097582 Iter: 10 Weight: -44.478396 Bias: 23.573870 Cost: 2412831.778656 Iter: 15 Weight: -10.989863 Bias: 24.393771 Cost: 141812.898689 Iter: 20 Weight: -2.876041 Bias: 24.587251 Cost: 8501.907289 Iter: 25 Weight: -0.910075 Bias: 24.628960 Cost: 676.341469 Iter: 30 Weight: -0.433628 Bias: 24.633899 Cost: 216.885960 Iter: 35 Weight: -0.318065 Bias: 24.629931 Cost: 189.827967 Iter: 40 Weight: -0.289939 Bias: 24.623806 Cost: 188.152151 Iter: 45 Weight: -0.282997 Bias: 24.617160 Cost: 187.966335 Iter: 50 Weight: -0.281188 Bias: 24.610389 Cost: 187.868027 Iter: 55 Weight: -0.280622 Bias: 24.603589 Cost: 187.774899 Iter: 60 Weight: -0.280358 Bias: 24.596783 Cost: 187.682118 Iter: 65 Weight: -0.280166 Bias: 24.589976 Cost: 187.589402 Iter: 70 Weight: -0.279993 Bias: 24.583172 Cost: 187.496732 Iter: 75 Weight: -0.279823 Bias: 24.576368 Cost: 187.404109 Iter: 80 Weight: -0.279655 Bias: 24.569567 Cost: 187.311531 Iter: 85 Weight: -0.279487 Bias: 24.562767 Cost: 187.218999 Iter: 90 Weight: -0.279319 Bias: 24.555969 Cost: 187.126514 Iter: 95 Weight: -0.279152 Bias: 24.549172 Cost: 187.034074 Iter: 100 Weight: -0.278984 Bias: 24.542377 Cost: 186.941680 Iter: 105 Weight: -0.278816 Bias: 24.535584 Cost: 186.849332 Iter: 110 Weight: -0.278648 Bias: 24.528793 Cost: 186.757030 Iter: 115 Weight: -0.278481 Bias: 24.522003 Cost: 186.664774 Iter: 120 Weight: -0.278313 Bias: 24.515215 Cost: 186.572564 Iter: 125 Weight: -0.278146 Bias: 24.508428 Cost: 186.480399 Iter: 130 Weight: -0.277978 Bias: 24.501644 Cost: 186.388280 Iter: 135 Weight: -0.277811 Bias: 24.494861 Cost: 186.296207 Iter: 140 Weight: -0.277643 Bias: 24.488079 Cost: 186.204179 Iter: 145 Weight: -0.277476 Bias: 24.481300 Cost: 186.112198 Iter: 150 Weight: -0.277309 Bias: 24.474522 Cost: 186.020261 Iter: 155 Weight: -0.277141 Bias: 24.467745 Cost: 185.928371 Iter: 160 Weight: -0.276974 Bias: 24.460971 Cost: 185.836526 Iter: 165 Weight: -0.276807 Bias: 24.454198 Cost: 185.744727 Iter: 170 Weight: -0.276640 Bias: 24.447426 Cost: 185.652973 Iter: 175 Weight: -0.276473 Bias: 24.440657 Cost: 185.561265 Iter: 180 Weight: -0.276306 Bias: 24.433889 Cost: 185.469603 Iter: 185 Weight: -0.276138 Bias: 24.427123 Cost: 185.377986 Iter: 190 Weight: -0.275971 Bias: 24.420358 Cost: 185.286414 Iter: 195 Weight: -0.275805 Bias: 24.413595 Cost: 185.194888 Iter: 200 Weight: -0.275638 Bias: 24.406834 Cost: 185.103407 Iter: 205 Weight: -0.275471 Bias: 24.400075 Cost: 185.011972 Iter: 210 Weight: -0.275304 Bias: 24.393317 Cost: 184.920582 Iter: 215 Weight: -0.275137 Bias: 24.386561 Cost: 184.829238 Iter: 220 Weight: -0.274970 Bias: 24.379806 Cost: 184.737939 Iter: 225 Weight: -0.274804 Bias: 24.373053 Cost: 184.646685 Iter: 230 Weight: -0.274637 Bias: 24.366302 Cost: 184.555477 Iter: 235 Weight: -0.274470 Bias: 24.359553 Cost: 184.464314 Iter: 240 Weight: -0.274304 Bias: 24.352805 Cost: 184.373196 Iter: 245 Weight: -0.274137 Bias: 24.346059 Cost: 184.282123 Iter: 250 Weight: -0.273971 Bias: 24.339315 Cost: 184.191096 Iter: 255 Weight: -0.273804 Bias: 24.332572 Cost: 184.100113 Iter: 260 Weight: -0.273638 Bias: 24.325831 Cost: 184.009176 Iter: 265 Weight: -0.273472 Bias: 24.319091 Cost: 183.918284 Iter: 270 Weight: -0.273305 Bias: 24.312354 Cost: 183.827438 Iter: 275 Weight: -0.273139 Bias: 24.305618 Cost: 183.736636 Iter: 280 Weight: -0.272973 Bias: 24.298883 Cost: 183.645879 Iter: 285 Weight: -0.272806 Bias: 24.292150 Cost: 183.555168 Iter: 290 Weight: -0.272640 Bias: 24.285419 Cost: 183.464501 Iter: 295 Weight: -0.272474 Bias: 24.278690 Cost: 183.373880 Iter: 300 Weight: -0.272308 Bias: 24.271962 Cost: 183.283303 Iter: 305 Weight: -0.272142 Bias: 24.265236 Cost: 183.192772 Iter: 310 Weight: -0.271976 Bias: 24.258512 Cost: 183.102285 Iter: 315 Weight: -0.271810 Bias: 24.251789 Cost: 183.011844 Iter: 320 Weight: -0.271644 Bias: 24.245068 Cost: 182.921447 Iter: 325 Weight: -0.271478 Bias: 24.238349 Cost: 182.831095 Iter: 330 Weight: -0.271312 Bias: 24.231631 Cost: 182.740788 Iter: 335 Weight: -0.271147 Bias: 24.224915 Cost: 182.650526 Iter: 340 Weight: -0.270981 Bias: 24.218201 Cost: 182.560309 Iter: 345 Weight: -0.270815 Bias: 24.211488 Cost: 182.470136 Iter: 350 Weight: -0.270649 Bias: 24.204777 Cost: 182.380008 Iter: 355 Weight: -0.270484 Bias: 24.198068 Cost: 182.289925 Iter: 360 Weight: -0.270318 Bias: 24.191360 Cost: 182.199887 Iter: 365 Weight: -0.270153 Bias: 24.184654 Cost: 182.109893 Iter: 370 Weight: -0.269987 Bias: 24.177950 Cost: 182.019945 Iter: 375 Weight: -0.269822 Bias: 24.171247 Cost: 181.930040 Iter: 380 Weight: -0.269656 Bias: 24.164546 Cost: 181.840181 Iter: 385 Weight: -0.269491 Bias: 24.157847 Cost: 181.750366 Iter: 390 Weight: -0.269326 Bias: 24.151149 Cost: 181.660595 Iter: 395 Weight: -0.269160 Bias: 24.144453 Cost: 181.570870 Iter: 400 Weight: -0.268995 Bias: 24.137759 Cost: 181.481188 Iter: 405 Weight: -0.268830 Bias: 24.131066 Cost: 181.391552 Iter: 410 Weight: -0.268665 Bias: 24.124375 Cost: 181.301959 Iter: 415 Weight: -0.268499 Bias: 24.117686 Cost: 181.212412 Iter: 420 Weight: -0.268334 Bias: 24.110998 Cost: 181.122908 Iter: 425 Weight: -0.268169 Bias: 24.104312 Cost: 181.033450 Iter: 430 Weight: -0.268004 Bias: 24.097628 Cost: 180.944035 Iter: 435 Weight: -0.267839 Bias: 24.090945 Cost: 180.854665 Iter: 440 Weight: -0.267674 Bias: 24.084264 Cost: 180.765339 Iter: 445 Weight: -0.267509 Bias: 24.077584 Cost: 180.676058 Iter: 450 Weight: -0.267345 Bias: 24.070907 Cost: 180.586821 Iter: 455 Weight: -0.267180 Bias: 24.064231 Cost: 180.497629 Iter: 460 Weight: -0.267015 Bias: 24.057556 Cost: 180.408480 Iter: 465 Weight: -0.266850 Bias: 24.050883 Cost: 180.319376 Iter: 470 Weight: -0.266686 Bias: 24.044212 Cost: 180.230316 Iter: 475 Weight: -0.266521 Bias: 24.037543 Cost: 180.141300 Iter: 480 Weight: -0.266356 Bias: 24.030875 Cost: 180.052329 Iter: 485 Weight: -0.266192 Bias: 24.024209 Cost: 179.963402 Iter: 490 Weight: -0.266027 Bias: 24.017544 Cost: 179.874519 Iter: 495 Weight: -0.265863 Bias: 24.010881 Cost: 179.785680 Iter: 500 Weight: -0.265698 Bias: 24.004220 Cost: 179.696885 Iter: 505 Weight: -0.265534 Bias: 23.997561 Cost: 179.608134 Iter: 510 Weight: -0.265370 Bias: 23.990903 Cost: 179.519427 Iter: 515 Weight: -0.265205 Bias: 23.984247 Cost: 179.430765 Iter: 520 Weight: -0.265041 Bias: 23.977592 Cost: 179.342146 Iter: 525 Weight: -0.264877 Bias: 23.970939 Cost: 179.253571 Iter: 530 Weight: -0.264713 Bias: 23.964288 Cost: 179.165041 Iter: 535 Weight: -0.264548 Bias: 23.957638 Cost: 179.076554 Iter: 540 Weight: -0.264384 Bias: 23.950990 Cost: 178.988111 Iter: 545 Weight: -0.264220 Bias: 23.944344 Cost: 178.899712 Iter: 550 Weight: -0.264056 Bias: 23.937699 Cost: 178.811357 Iter: 555 Weight: -0.263892 Bias: 23.931056 Cost: 178.723046 Iter: 560 Weight: -0.263728 Bias: 23.924415 Cost: 178.634779 Iter: 565 Weight: -0.263564 Bias: 23.917775 Cost: 178.546555 Iter: 570 Weight: -0.263400 Bias: 23.911137 Cost: 178.458376 Iter: 575 Weight: -0.263237 Bias: 23.904501 Cost: 178.370240 Iter: 580 Weight: -0.263073 Bias: 23.897866 Cost: 178.282148 Iter: 585 Weight: -0.262909 Bias: 23.891233 Cost: 178.194099 Iter: 590 Weight: -0.262745 Bias: 23.884601 Cost: 178.106095 Iter: 595 Weight: -0.262582 Bias: 23.877971 Cost: 178.018134 Iter: 600 Weight: -0.262418 Bias: 23.871343 Cost: 177.930216 Iter: 605 Weight: -0.262254 Bias: 23.864717 Cost: 177.842343 Iter: 610 Weight: -0.262091 Bias: 23.858092 Cost: 177.754513 Iter: 615 Weight: -0.261927 Bias: 23.851468 Cost: 177.666726 Iter: 620 Weight: -0.261764 Bias: 23.844847 Cost: 177.578984 Iter: 625 Weight: -0.261600 Bias: 23.838227 Cost: 177.491284 Iter: 630 Weight: -0.261437 Bias: 23.831609 Cost: 177.403629 Iter: 635 Weight: -0.261274 Bias: 23.824992 Cost: 177.316017 Iter: 640 Weight: -0.261110 Bias: 23.818377 Cost: 177.228448 Iter: 645 Weight: -0.260947 Bias: 23.811763 Cost: 177.140923 Iter: 650 Weight: -0.260784 Bias: 23.805152 Cost: 177.053441 Iter: 655 Weight: -0.260621 Bias: 23.798542 Cost: 176.966003 Iter: 660 Weight: -0.260458 Bias: 23.791933 Cost: 176.878608 Iter: 665 Weight: -0.260295 Bias: 23.785326 Cost: 176.791256 Iter: 670 Weight: -0.260131 Bias: 23.778721 Cost: 176.703948 Iter: 675 Weight: -0.259968 Bias: 23.772117 Cost: 176.616683 Iter: 680 Weight: -0.259805 Bias: 23.765516 Cost: 176.529462 Iter: 685 Weight: -0.259642 Bias: 23.758915 Cost: 176.442284 Iter: 690 Weight: -0.259480 Bias: 23.752317 Cost: 176.355149 Iter: 695 Weight: -0.259317 Bias: 23.745720 Cost: 176.268058 Iter: 700 Weight: -0.259154 Bias: 23.739124 Cost: 176.181009 Iter: 705 Weight: -0.258991 Bias: 23.732531 Cost: 176.094004 Iter: 710 Weight: -0.258828 Bias: 23.725939 Cost: 176.007042 Iter: 715 Weight: -0.258666 Bias: 23.719348 Cost: 175.920123 Iter: 720 Weight: -0.258503 Bias: 23.712759 Cost: 175.833248 Iter: 725 Weight: -0.258340 Bias: 23.706172 Cost: 175.746415 Iter: 730 Weight: -0.258178 Bias: 23.699587 Cost: 175.659626 Iter: 735 Weight: -0.258015 Bias: 23.693003 Cost: 175.572880 Iter: 740 Weight: -0.257853 Bias: 23.686420 Cost: 175.486177 Iter: 745 Weight: -0.257690 Bias: 23.679840 Cost: 175.399517 Iter: 750 Weight: -0.257528 Bias: 23.673261 Cost: 175.312899 Iter: 755 Weight: -0.257366 Bias: 23.666683 Cost: 175.226325 Iter: 760 Weight: -0.257203 Bias: 23.660108 Cost: 175.139794 Iter: 765 Weight: -0.257041 Bias: 23.653534 Cost: 175.053306 Iter: 770 Weight: -0.256879 Bias: 23.646961 Cost: 174.966861 Iter: 775 Weight: -0.256716 Bias: 23.640390 Cost: 174.880459 Iter: 780 Weight: -0.256554 Bias: 23.633821 Cost: 174.794099 Iter: 785 Weight: -0.256392 Bias: 23.627253 Cost: 174.707783 Iter: 790 Weight: -0.256230 Bias: 23.620688 Cost: 174.621509 Iter: 795 Weight: -0.256068 Bias: 23.614123 Cost: 174.535278 Iter: 800 Weight: -0.255906 Bias: 23.607561 Cost: 174.449090 Iter: 805 Weight: -0.255744 Bias: 23.600999 Cost: 174.362945 Iter: 810 Weight: -0.255582 Bias: 23.594440 Cost: 174.276843 Iter: 815 Weight: -0.255420 Bias: 23.587882 Cost: 174.190783 Iter: 820 Weight: -0.255258 Bias: 23.581326 Cost: 174.104766 Iter: 825 Weight: -0.255097 Bias: 23.574772 Cost: 174.018792 Iter: 830 Weight: -0.254935 Bias: 23.568219 Cost: 173.932860 Iter: 835 Weight: -0.254773 Bias: 23.561667 Cost: 173.846971 Iter: 840 Weight: -0.254611 Bias: 23.555118 Cost: 173.761125 Iter: 845 Weight: -0.254450 Bias: 23.548570 Cost: 173.675322 Iter: 850 Weight: -0.254288 Bias: 23.542023 Cost: 173.589561 Iter: 855 Weight: -0.254127 Bias: 23.535478 Cost: 173.503842 Iter: 860 Weight: -0.253965 Bias: 23.528935 Cost: 173.418166 Iter: 865 Weight: -0.253804 Bias: 23.522394 Cost: 173.332533 Iter: 870 Weight: -0.253642 Bias: 23.515854 Cost: 173.246942 Iter: 875 Weight: -0.253481 Bias: 23.509316 Cost: 173.161394 Iter: 880 Weight: -0.253319 Bias: 23.502779 Cost: 173.075888 Iter: 885 Weight: -0.253158 Bias: 23.496244 Cost: 172.990425 Iter: 890 Weight: -0.252997 Bias: 23.489710 Cost: 172.905004 Iter: 895 Weight: -0.252835 Bias: 23.483179 Cost: 172.819625 Iter: 900 Weight: -0.252674 Bias: 23.476648 Cost: 172.734289 Iter: 905 Weight: -0.252513 Bias: 23.470120 Cost: 172.648995 Iter: 910 Weight: -0.252352 Bias: 23.463593 Cost: 172.563744 Iter: 915 Weight: -0.252191 Bias: 23.457068 Cost: 172.478535 Iter: 920 Weight: -0.252030 Bias: 23.450544 Cost: 172.393368 Iter: 925 Weight: -0.251869 Bias: 23.444022 Cost: 172.308244 Iter: 930 Weight: -0.251708 Bias: 23.437501 Cost: 172.223161 Iter: 935 Weight: -0.251547 Bias: 23.430983 Cost: 172.138121 Iter: 940 Weight: -0.251386 Bias: 23.424465 Cost: 172.053124 Iter: 945 Weight: -0.251225 Bias: 23.417950 Cost: 171.968168 Iter: 950 Weight: -0.251064 Bias: 23.411436 Cost: 171.883255 Iter: 955 Weight: -0.250904 Bias: 23.404924 Cost: 171.798383 Iter: 960 Weight: -0.250743 Bias: 23.398413 Cost: 171.713554 Iter: 965 Weight: -0.250582 Bias: 23.391904 Cost: 171.628767 Iter: 970 Weight: -0.250421 Bias: 23.385396 Cost: 171.544022 Iter: 975 Weight: -0.250261 Bias: 23.378890 Cost: 171.459320 Iter: 980 Weight: -0.250100 Bias: 23.372386 Cost: 171.374659 Iter: 985 Weight: -0.249940 Bias: 23.365883 Cost: 171.290040 Iter: 990 Weight: -0.249779 Bias: 23.359382 Cost: 171.205464 Iter: 995 Weight: -0.249619 Bias: 23.352883 Cost: 171.120929 Iter: 1000 Weight: -0.249458 Bias: 23.346385 Cost: 171.036436 Iter: 1005 Weight: -0.249298 Bias: 23.339889 Cost: 170.951985 Iter: 1010 Weight: -0.249138 Bias: 23.333394 Cost: 170.867577 Iter: 1015 Weight: -0.248977 Bias: 23.326901 Cost: 170.783210 Iter: 1020 Weight: -0.248817 Bias: 23.320410 Cost: 170.698885 Iter: 1025 Weight: -0.248657 Bias: 23.313920 Cost: 170.614602 Iter: 1030 Weight: -0.248497 Bias: 23.307432 Cost: 170.530360 Iter: 1035 Weight: -0.248337 Bias: 23.300945 Cost: 170.446161 Iter: 1040 Weight: -0.248177 Bias: 23.294460 Cost: 170.362003 Iter: 1045 Weight: -0.248016 Bias: 23.287977 Cost: 170.277887 Iter: 1050 Weight: -0.247856 Bias: 23.281495 Cost: 170.193813 Iter: 1055 Weight: -0.247696 Bias: 23.275015 Cost: 170.109781 Iter: 1060 Weight: -0.247537 Bias: 23.268537 Cost: 170.025790 Iter: 1065 Weight: -0.247377 Bias: 23.262060 Cost: 169.941841 Iter: 1070 Weight: -0.247217 Bias: 23.255585 Cost: 169.857934 Iter: 1075 Weight: -0.247057 Bias: 23.249111 Cost: 169.774068 Iter: 1080 Weight: -0.246897 Bias: 23.242639 Cost: 169.690244 Iter: 1085 Weight: -0.246737 Bias: 23.236169 Cost: 169.606462 Iter: 1090 Weight: -0.246578 Bias: 23.229700 Cost: 169.522721 Iter: 1095 Weight: -0.246418 Bias: 23.223232 Cost: 169.439022 Iter: 1100 Weight: -0.246259 Bias: 23.216767 Cost: 169.355364 Iter: 1105 Weight: -0.246099 Bias: 23.210303 Cost: 169.271748 Iter: 1110 Weight: -0.245939 Bias: 23.203840 Cost: 169.188174 Iter: 1115 Weight: -0.245780 Bias: 23.197380 Cost: 169.104640 Iter: 1120 Weight: -0.245620 Bias: 23.190920 Cost: 169.021149 Iter: 1125 Weight: -0.245461 Bias: 23.184463 Cost: 168.937699 Iter: 1130 Weight: -0.245302 Bias: 23.178007 Cost: 168.854290 Iter: 1135 Weight: -0.245142 Bias: 23.171552 Cost: 168.770923 Iter: 1140 Weight: -0.244983 Bias: 23.165100 Cost: 168.687597 Iter: 1145 Weight: -0.244824 Bias: 23.158648 Cost: 168.604312 Iter: 1150 Weight: -0.244665 Bias: 23.152199 Cost: 168.521069 Iter: 1155 Weight: -0.244505 Bias: 23.145751 Cost: 168.437867 Iter: 1160 Weight: -0.244346 Bias: 23.139304 Cost: 168.354707 Iter: 1165 Weight: -0.244187 Bias: 23.132860 Cost: 168.271588 Iter: 1170 Weight: -0.244028 Bias: 23.126416 Cost: 168.188510 Iter: 1175 Weight: -0.243869 Bias: 23.119975 Cost: 168.105473 Iter: 1180 Weight: -0.243710 Bias: 23.113535 Cost: 168.022477 Iter: 1185 Weight: -0.243551 Bias: 23.107096 Cost: 167.939523 Iter: 1190 Weight: -0.243392 Bias: 23.100660 Cost: 167.856610 Iter: 1195 Weight: -0.243233 Bias: 23.094224 Cost: 167.773738 Iter: 1200 Weight: -0.243074 Bias: 23.087791 Cost: 167.690907 Iter: 1205 Weight: -0.242916 Bias: 23.081359 Cost: 167.608118 Iter: 1210 Weight: -0.242757 Bias: 23.074928 Cost: 167.525369 Iter: 1215 Weight: -0.242598 Bias: 23.068500 Cost: 167.442662 Iter: 1220 Weight: -0.242440 Bias: 23.062072 Cost: 167.359995 Iter: 1225 Weight: -0.242281 Bias: 23.055647 Cost: 167.277370 Iter: 1230 Weight: -0.242122 Bias: 23.049223 Cost: 167.194785 Iter: 1235 Weight: -0.241964 Bias: 23.042800 Cost: 167.112242 Iter: 1240 Weight: -0.241805 Bias: 23.036380 Cost: 167.029740 Iter: 1245 Weight: -0.241647 Bias: 23.029960 Cost: 166.947278 Iter: 1250 Weight: -0.241488 Bias: 23.023543 Cost: 166.864858 Iter: 1255 Weight: -0.241330 Bias: 23.017127 Cost: 166.782478 Iter: 1260 Weight: -0.241172 Bias: 23.010712 Cost: 166.700140 Iter: 1265 Weight: -0.241013 Bias: 23.004299 Cost: 166.617842 Iter: 1270 Weight: -0.240855 Bias: 22.997888 Cost: 166.535585 Iter: 1275 Weight: -0.240697 Bias: 22.991478 Cost: 166.453369 Iter: 1280 Weight: -0.240539 Bias: 22.985070 Cost: 166.371194 Iter: 1285 Weight: -0.240380 Bias: 22.978664 Cost: 166.289060 Iter: 1290 Weight: -0.240222 Bias: 22.972259 Cost: 166.206966 Iter: 1295 Weight: -0.240064 Bias: 22.965856 Cost: 166.124913 Iter: 1300 Weight: -0.239906 Bias: 22.959454 Cost: 166.042901 Iter: 1305 Weight: -0.239748 Bias: 22.953054 Cost: 165.960930 Iter: 1310 Weight: -0.239590 Bias: 22.946655 Cost: 165.878999 Iter: 1315 Weight: -0.239432 Bias: 22.940258 Cost: 165.797109 Iter: 1320 Weight: -0.239274 Bias: 22.933863 Cost: 165.715260 Iter: 1325 Weight: -0.239117 Bias: 22.927469 Cost: 165.633451 Iter: 1330 Weight: -0.238959 Bias: 22.921077 Cost: 165.551683 Iter: 1335 Weight: -0.238801 Bias: 22.914686 Cost: 165.469955 Iter: 1340 Weight: -0.238643 Bias: 22.908297 Cost: 165.388268 Iter: 1345 Weight: -0.238486 Bias: 22.901910 Cost: 165.306622 Iter: 1350 Weight: -0.238328 Bias: 22.895524 Cost: 165.225016 Iter: 1355 Weight: -0.238170 Bias: 22.889140 Cost: 165.143451 Iter: 1360 Weight: -0.238013 Bias: 22.882757 Cost: 165.061926 Iter: 1365 Weight: -0.237855 Bias: 22.876376 Cost: 164.980442 Iter: 1370 Weight: -0.237698 Bias: 22.869996 Cost: 164.898998 Iter: 1375 Weight: -0.237540 Bias: 22.863618 Cost: 164.817594 Iter: 1380 Weight: -0.237383 Bias: 22.857242 Cost: 164.736231 Iter: 1385 Weight: -0.237226 Bias: 22.850867 Cost: 164.654909 Iter: 1390 Weight: -0.237068 Bias: 22.844494 Cost: 164.573627 Iter: 1395 Weight: -0.236911 Bias: 22.838123 Cost: 164.492385 Iter: 1400 Weight: -0.236754 Bias: 22.831753 Cost: 164.411183 Iter: 1405 Weight: -0.236596 Bias: 22.825384 Cost: 164.330022 Iter: 1410 Weight: -0.236439 Bias: 22.819017 Cost: 164.248901 Iter: 1415 Weight: -0.236282 Bias: 22.812652 Cost: 164.167820 Iter: 1420 Weight: -0.236125 Bias: 22.806288 Cost: 164.086780 Iter: 1425 Weight: -0.235968 Bias: 22.799926 Cost: 164.005780 Iter: 1430 Weight: -0.235811 Bias: 22.793566 Cost: 163.924820 Iter: 1435 Weight: -0.235654 Bias: 22.787207 Cost: 163.843900 Iter: 1440 Weight: -0.235497 Bias: 22.780849 Cost: 163.763020 Iter: 1445 Weight: -0.235340 Bias: 22.774494 Cost: 163.682181 Iter: 1450 Weight: -0.235183 Bias: 22.768139 Cost: 163.601382 Iter: 1455 Weight: -0.235026 Bias: 22.761787 Cost: 163.520623 Iter: 1460 Weight: -0.234870 Bias: 22.755436 Cost: 163.439904 Iter: 1465 Weight: -0.234713 Bias: 22.749086 Cost: 163.359225 Iter: 1470 Weight: -0.234556 Bias: 22.742738 Cost: 163.278586 Iter: 1475 Weight: -0.234400 Bias: 22.736392 Cost: 163.197987 Iter: 1480 Weight: -0.234243 Bias: 22.730047 Cost: 163.117428 Iter: 1485 Weight: -0.234086 Bias: 22.723704 Cost: 163.036909 Iter: 1490 Weight: -0.233930 Bias: 22.717362 Cost: 162.956430 Iter: 1495 Weight: -0.233773 Bias: 22.711022 Cost: 162.875991 Iter: 1500 Weight: -0.233617 Bias: 22.704684 Cost: 162.795592 Iter: 1505 Weight: -0.233460 Bias: 22.698347 Cost: 162.715233 Iter: 1510 Weight: -0.233304 Bias: 22.692012 Cost: 162.634914 Iter: 1515 Weight: -0.233148 Bias: 22.685678 Cost: 162.554635 Iter: 1520 Weight: -0.232991 Bias: 22.679346 Cost: 162.474395 Iter: 1525 Weight: -0.232835 Bias: 22.673015 Cost: 162.394196 Iter: 1530 Weight: -0.232679 Bias: 22.666686 Cost: 162.314036 Iter: 1535 Weight: -0.232523 Bias: 22.660359 Cost: 162.233916 Iter: 1540 Weight: -0.232366 Bias: 22.654033 Cost: 162.153836 Iter: 1545 Weight: -0.232210 Bias: 22.647709 Cost: 162.073795 Iter: 1550 Weight: -0.232054 Bias: 22.641386 Cost: 161.993795 Iter: 1555 Weight: -0.231898 Bias: 22.635065 Cost: 161.913834 Iter: 1560 Weight: -0.231742 Bias: 22.628745 Cost: 161.833913 Iter: 1565 Weight: -0.231586 Bias: 22.622427 Cost: 161.754031 Iter: 1570 Weight: -0.231430 Bias: 22.616111 Cost: 161.674189 Iter: 1575 Weight: -0.231274 Bias: 22.609796 Cost: 161.594387 Iter: 1580 Weight: -0.231118 Bias: 22.603482 Cost: 161.514624 Iter: 1585 Weight: -0.230963 Bias: 22.597171 Cost: 161.434901 Iter: 1590 Weight: -0.230807 Bias: 22.590860 Cost: 161.355218 Iter: 1595 Weight: -0.230651 Bias: 22.584552 Cost: 161.275574 Iter: 1600 Weight: -0.230495 Bias: 22.578245 Cost: 161.195969 Iter: 1605 Weight: -0.230340 Bias: 22.571939 Cost: 161.116405 Iter: 1610 Weight: -0.230184 Bias: 22.565635 Cost: 161.036879 Iter: 1615 Weight: -0.230028 Bias: 22.559333 Cost: 160.957393 Iter: 1620 Weight: -0.229873 Bias: 22.553032 Cost: 160.877947 Iter: 1625 Weight: -0.229717 Bias: 22.546733 Cost: 160.798540 Iter: 1630 Weight: -0.229562 Bias: 22.540435 Cost: 160.719173 Iter: 1635 Weight: -0.229407 Bias: 22.534139 Cost: 160.639845 Iter: 1640 Weight: -0.229251 Bias: 22.527845 Cost: 160.560556 Iter: 1645 Weight: -0.229096 Bias: 22.521552 Cost: 160.481307 Iter: 1650 Weight: -0.228940 Bias: 22.515260 Cost: 160.402097 Iter: 1655 Weight: -0.228785 Bias: 22.508970 Cost: 160.322926 Iter: 1660 Weight: -0.228630 Bias: 22.502682 Cost: 160.243795 Iter: 1665 Weight: -0.228475 Bias: 22.496395 Cost: 160.164702 Iter: 1670 Weight: -0.228320 Bias: 22.490110 Cost: 160.085650 Iter: 1675 Weight: -0.228164 Bias: 22.483827 Cost: 160.006636 Iter: 1680 Weight: -0.228009 Bias: 22.477545 Cost: 159.927662 Iter: 1685 Weight: -0.227854 Bias: 22.471264 Cost: 159.848727 Iter: 1690 Weight: -0.227699 Bias: 22.464985 Cost: 159.769831 Iter: 1695 Weight: -0.227544 Bias: 22.458708 Cost: 159.690974 Iter: 1700 Weight: -0.227389 Bias: 22.452432 Cost: 159.612157 Iter: 1705 Weight: -0.227235 Bias: 22.446158 Cost: 159.533378 Iter: 1710 Weight: -0.227080 Bias: 22.439885 Cost: 159.454639 Iter: 1715 Weight: -0.226925 Bias: 22.433614 Cost: 159.375939 Iter: 1720 Weight: -0.226770 Bias: 22.427344 Cost: 159.297277 Iter: 1725 Weight: -0.226615 Bias: 22.421076 Cost: 159.218655 Iter: 1730 Weight: -0.226461 Bias: 22.414810 Cost: 159.140072 Iter: 1735 Weight: -0.226306 Bias: 22.408545 Cost: 159.061528 Iter: 1740 Weight: -0.226151 Bias: 22.402282 Cost: 158.983023 Iter: 1745 Weight: -0.225997 Bias: 22.396020 Cost: 158.904557 Iter: 1750 Weight: -0.225842 Bias: 22.389760 Cost: 158.826130 Iter: 1755 Weight: -0.225688 Bias: 22.383501 Cost: 158.747742 Iter: 1760 Weight: -0.225533 Bias: 22.377244 Cost: 158.669393 Iter: 1765 Weight: -0.225379 Bias: 22.370988 Cost: 158.591082 Iter: 1770 Weight: -0.225224 Bias: 22.364734 Cost: 158.512811 Iter: 1775 Weight: -0.225070 Bias: 22.358482 Cost: 158.434578 Iter: 1780 Weight: -0.224916 Bias: 22.352231 Cost: 158.356384 Iter: 1785 Weight: -0.224761 Bias: 22.345981 Cost: 158.278229 Iter: 1790 Weight: -0.224607 Bias: 22.339734 Cost: 158.200113 Iter: 1795 Weight: -0.224453 Bias: 22.333487 Cost: 158.122036 Iter: 1800 Weight: -0.224299 Bias: 22.327243 Cost: 158.043997 Iter: 1805 Weight: -0.224145 Bias: 22.320999 Cost: 157.965998 Iter: 1810 Weight: -0.223991 Bias: 22.314758 Cost: 157.888036 Iter: 1815 Weight: -0.223837 Bias: 22.308518 Cost: 157.810114 Iter: 1820 Weight: -0.223683 Bias: 22.302279 Cost: 157.732230 Iter: 1825 Weight: -0.223529 Bias: 22.296042 Cost: 157.654385 Iter: 1830 Weight: -0.223375 Bias: 22.289807 Cost: 157.576579 Iter: 1835 Weight: -0.223221 Bias: 22.283573 Cost: 157.498811 Iter: 1840 Weight: -0.223067 Bias: 22.277341 Cost: 157.421082 Iter: 1845 Weight: -0.222913 Bias: 22.271110 Cost: 157.343392 Iter: 1850 Weight: -0.222759 Bias: 22.264881 Cost: 157.265740 Iter: 1855 Weight: -0.222606 Bias: 22.258653 Cost: 157.188126 Iter: 1860 Weight: -0.222452 Bias: 22.252427 Cost: 157.110551 Iter: 1865 Weight: -0.222298 Bias: 22.246202 Cost: 157.033015 Iter: 1870 Weight: -0.222145 Bias: 22.239979 Cost: 156.955517 Iter: 1875 Weight: -0.221991 Bias: 22.233758 Cost: 156.878058 Iter: 1880 Weight: -0.221837 Bias: 22.227538 Cost: 156.800637 Iter: 1885 Weight: -0.221684 Bias: 22.221319 Cost: 156.723254 Iter: 1890 Weight: -0.221530 Bias: 22.215102 Cost: 156.645910 Iter: 1895 Weight: -0.221377 Bias: 22.208887 Cost: 156.568605 Iter: 1900 Weight: -0.221224 Bias: 22.202673 Cost: 156.491337 Iter: 1905 Weight: -0.221070 Bias: 22.196461 Cost: 156.414108 Iter: 1910 Weight: -0.220917 Bias: 22.190250 Cost: 156.336918 Iter: 1915 Weight: -0.220764 Bias: 22.184041 Cost: 156.259766 Iter: 1920 Weight: -0.220610 Bias: 22.177834 Cost: 156.182652 Iter: 1925 Weight: -0.220457 Bias: 22.171628 Cost: 156.105576 Iter: 1930 Weight: -0.220304 Bias: 22.165423 Cost: 156.028539 Iter: 1935 Weight: -0.220151 Bias: 22.159220 Cost: 155.951540 Iter: 1940 Weight: -0.219998 Bias: 22.153019 Cost: 155.874579 Iter: 1945 Weight: -0.219845 Bias: 22.146819 Cost: 155.797656 Iter: 1950 Weight: -0.219692 Bias: 22.140620 Cost: 155.720771 Iter: 1955 Weight: -0.219539 Bias: 22.134424 Cost: 155.643925 Iter: 1960 Weight: -0.219386 Bias: 22.128228 Cost: 155.567117 Iter: 1965 Weight: -0.219233 Bias: 22.122034 Cost: 155.490347 Iter: 1970 Weight: -0.219080 Bias: 22.115842 Cost: 155.413615 Iter: 1975 Weight: -0.218927 Bias: 22.109652 Cost: 155.336921 Iter: 1980 Weight: -0.218774 Bias: 22.103462 Cost: 155.260266 Iter: 1985 Weight: -0.218622 Bias: 22.097275 Cost: 155.183648 Iter: 1990 Weight: -0.218469 Bias: 22.091089 Cost: 155.107068 Iter: 1995 Weight: -0.218316 Bias: 22.084904 Cost: 155.030527 iters = np.arange(2000) # because the derivation of cost is too large # for visulazation, we need to shrink cost cost_history = np.log(np.array(cost_history)) plt.plot(iters, cost_history) [<matplotlib.lines.Line2D at 0x7fb27c9b99e8>]

sales_predict = weight_final*radio_sample + bias_final plt.scatter(radio_sample, sales_sample, alpha=0.5) plt.plot(radio_sample, sales_predict, c="r") plt.xlabel("radio") plt.ylabel("sales") Text(0, 0.5, 'sales')

The setting of hyperparameters is very import for gradient descent method. There must be lots of tricks which is another topic.

Task 2

Single feature —> multiple features

scalar —> matrix(vector)

Generate data

sample_size = 200 feature_size = 3 np.random.seed(5) feature_sample = 50*np.random.rand(feature_size)*np.random.rand(sample_size, feature_size)np.random.seed(123) weight_sample = np.random.rand(feature_size).reshape(feature_size, 1)np.random.seed(888) noise = np.random.normal(0, 0.01, sample_size).reshape(sample_size ,1)result_sample = np.dot(feature, weight) + noise

Normalization

We want to shrink the data to reduce the time to change weight. There must be lots of tricks which is another topic.

def normalize(feature):#feature: sample size * feature sizefeature = feature.astype("float64")sample_size, feature_size = feature.shapefor i in range(feature_size):fmean = np.mean(feature[:, i])frange = np.amax(feature[:, i]) - np.amin(feature[:, i])feature[:, i] = (feature[:, i] - fmean) / frangereturn feature

Prediction format

For simplifing the problem, here we just think bias is zero.

Ysample?1=Fsample?feature?Wfeature?1Y_{sample*1}=F_{sample*feature} \cdot W_{feature*1}Ysample?1?=Fsample?feature??Wfeature?1?

def predict(features, weight):weight = weight.reshape(len(weight), 1)prediction = np.dot(features, weight)return prediction

Cost function

MSE=12N∥Ytarget?Ypredict∥22MSE=\frac{1}{2 N} \left\|Y_{target}-Y_{predict}\right\|_2^2MSE=2N1?Ytarget??Ypredict?22?

def cost_function(features, targets, weight):#here weights should be (feature, 1)weight = weight.reshape(len(weight), 1)targets = targets.reshape(len(targets), 1)error = ((targets - predict(features, weight))**2).sum()return error/(2.0*len(targets))

Gradient descent

Just the equation derived in the watermelon book(3.11)

def update_weight(features, targets, weight, learning_rate):weight = weight.reshape(len(weight), 1)targets = targets.reshape(len(targets), 1)gradient = np.dot(features.T, (predict(features, weight) - targets))gradient = gradient / len(targets)weight = weight - gradient*learning_ratereturn weight

Training

def train(features, targets, weight, learning_rate, iters):cost_history = []for i in range(iters):weight = update_weight(features, targets, weight, learning_rate)cost = cost_function(features, targets, weight)cost_history.append(cost)if i % 5 == 0:print("Iter: %d \t \t Cost: %4f" %(i, cost))return weight, cost_history

Model evaluation

weight_initial = np.array([0, 0, 0]) weight, cost_history = train(feature_sample, result_sample, weight_initial, 0.0001, 1000) Iter: 0 Cost: 64.953149 Iter: 5 Cost: 33.915984 Iter: 10 Cost: 18.615390 Iter: 15 Cost: 11.053208 Iter: 20 Cost: 7.296763 Iter: 25 Cost: 5.412361 Iter: 30 Cost: 4.449195 Iter: 35 Cost: 3.939745 Iter: 40 Cost: 3.654115 Iter: 45 Cost: 3.479253 Iter: 50 Cost: 3.359556 Iter: 55 Cost: 3.267672 Iter: 60 Cost: 3.190135 Iter: 65 Cost: 3.120312 Iter: 70 Cost: 3.054928 Iter: 75 Cost: 2.992358 Iter: 80 Cost: 2.931792 Iter: 85 Cost: 2.872817 Iter: 90 Cost: 2.815220 Iter: 95 Cost: 2.758881 Iter: 100 Cost: 2.703732 Iter: 105 Cost: 2.649725 Iter: 110 Cost: 2.596827 Iter: 115 Cost: 2.545010 Iter: 120 Cost: 2.494250 Iter: 125 Cost: 2.444522 Iter: 130 Cost: 2.395806 Iter: 135 Cost: 2.348080 Iter: 140 Cost: 2.301324 Iter: 145 Cost: 2.255518 Iter: 150 Cost: 2.210643 Iter: 155 Cost: 2.166678 Iter: 160 Cost: 2.123606 Iter: 165 Cost: 2.081409 Iter: 170 Cost: 2.040067 Iter: 175 Cost: 1.999565 Iter: 180 Cost: 1.959884 Iter: 185 Cost: 1.921007 Iter: 190 Cost: 1.882919 Iter: 195 Cost: 1.845603 Iter: 200 Cost: 1.809044 Iter: 205 Cost: 1.773225 Iter: 210 Cost: 1.738131 Iter: 215 Cost: 1.703749 Iter: 220 Cost: 1.670062 Iter: 225 Cost: 1.637057 Iter: 230 Cost: 1.604721 Iter: 235 Cost: 1.573038 Iter: 240 Cost: 1.541997 Iter: 245 Cost: 1.511583 Iter: 250 Cost: 1.481784 Iter: 255 Cost: 1.452588 Iter: 260 Cost: 1.423981 Iter: 265 Cost: 1.395952 Iter: 270 Cost: 1.368490 Iter: 275 Cost: 1.341582 Iter: 280 Cost: 1.315217 Iter: 285 Cost: 1.289384 Iter: 290 Cost: 1.264073 Iter: 295 Cost: 1.239272 Iter: 300 Cost: 1.214971 Iter: 305 Cost: 1.191160 Iter: 310 Cost: 1.167828 Iter: 315 Cost: 1.144967 Iter: 320 Cost: 1.122566 Iter: 325 Cost: 1.100617 Iter: 330 Cost: 1.079109 Iter: 335 Cost: 1.058034 Iter: 340 Cost: 1.037383 Iter: 345 Cost: 1.017147 Iter: 350 Cost: 0.997318 Iter: 355 Cost: 0.977888 Iter: 360 Cost: 0.958848 Iter: 365 Cost: 0.940190 Iter: 370 Cost: 0.921908 Iter: 375 Cost: 0.903992 Iter: 380 Cost: 0.886435 Iter: 385 Cost: 0.869231 Iter: 390 Cost: 0.852372 Iter: 395 Cost: 0.835851 Iter: 400 Cost: 0.819660 Iter: 405 Cost: 0.803795 Iter: 410 Cost: 0.788246 Iter: 415 Cost: 0.773010 Iter: 420 Cost: 0.758078 Iter: 425 Cost: 0.743444 Iter: 430 Cost: 0.729104 Iter: 435 Cost: 0.715050 Iter: 440 Cost: 0.701277 Iter: 445 Cost: 0.687779 Iter: 450 Cost: 0.674550 Iter: 455 Cost: 0.661586 Iter: 460 Cost: 0.648880 Iter: 465 Cost: 0.636427 Iter: 470 Cost: 0.624223 Iter: 475 Cost: 0.612262 Iter: 480 Cost: 0.600540 Iter: 485 Cost: 0.589050 Iter: 490 Cost: 0.577790 Iter: 495 Cost: 0.566753 Iter: 500 Cost: 0.555936 Iter: 505 Cost: 0.545334 Iter: 510 Cost: 0.534943 Iter: 515 Cost: 0.524758 Iter: 520 Cost: 0.514775 Iter: 525 Cost: 0.504991 Iter: 530 Cost: 0.495400 Iter: 535 Cost: 0.486000 Iter: 540 Cost: 0.476786 Iter: 545 Cost: 0.467754 Iter: 550 Cost: 0.458901 Iter: 555 Cost: 0.450224 Iter: 560 Cost: 0.441718 Iter: 565 Cost: 0.433380 Iter: 570 Cost: 0.425207 Iter: 575 Cost: 0.417196 Iter: 580 Cost: 0.409342 Iter: 585 Cost: 0.401644 Iter: 590 Cost: 0.394097 Iter: 595 Cost: 0.386700 Iter: 600 Cost: 0.379448 Iter: 605 Cost: 0.372339 Iter: 610 Cost: 0.365369 Iter: 615 Cost: 0.358537 Iter: 620 Cost: 0.351839 Iter: 625 Cost: 0.345273 Iter: 630 Cost: 0.338836 Iter: 635 Cost: 0.332525 Iter: 640 Cost: 0.326338 Iter: 645 Cost: 0.320272 Iter: 650 Cost: 0.314326 Iter: 655 Cost: 0.308495 Iter: 660 Cost: 0.302779 Iter: 665 Cost: 0.297175 Iter: 670 Cost: 0.291680 Iter: 675 Cost: 0.286292 Iter: 680 Cost: 0.281010 Iter: 685 Cost: 0.275831 Iter: 690 Cost: 0.270753 Iter: 695 Cost: 0.265774 Iter: 700 Cost: 0.260892 Iter: 705 Cost: 0.256105 Iter: 710 Cost: 0.251411 Iter: 715 Cost: 0.246808 Iter: 720 Cost: 0.242295 Iter: 725 Cost: 0.237870 Iter: 730 Cost: 0.233530 Iter: 735 Cost: 0.229275 Iter: 740 Cost: 0.225102 Iter: 745 Cost: 0.221010 Iter: 750 Cost: 0.216997 Iter: 755 Cost: 0.213062 Iter: 760 Cost: 0.209202 Iter: 765 Cost: 0.205418 Iter: 770 Cost: 0.201706 Iter: 775 Cost: 0.198066 Iter: 780 Cost: 0.194496 Iter: 785 Cost: 0.190995 Iter: 790 Cost: 0.187561 Iter: 795 Cost: 0.184194 Iter: 800 Cost: 0.180891 Iter: 805 Cost: 0.177651 Iter: 810 Cost: 0.174474 Iter: 815 Cost: 0.171358 Iter: 820 Cost: 0.168301 Iter: 825 Cost: 0.165303 Iter: 830 Cost: 0.162362 Iter: 835 Cost: 0.159477 Iter: 840 Cost: 0.156648 Iter: 845 Cost: 0.153873 Iter: 850 Cost: 0.151150 Iter: 855 Cost: 0.148479 Iter: 860 Cost: 0.145860 Iter: 865 Cost: 0.143290 Iter: 870 Cost: 0.140768 Iter: 875 Cost: 0.138295 Iter: 880 Cost: 0.135869 Iter: 885 Cost: 0.133489 Iter: 890 Cost: 0.131153 Iter: 895 Cost: 0.128862 Iter: 900 Cost: 0.126615 Iter: 905 Cost: 0.124410 Iter: 910 Cost: 0.122246 Iter: 915 Cost: 0.120123 Iter: 920 Cost: 0.118040 Iter: 925 Cost: 0.115997 Iter: 930 Cost: 0.113992 Iter: 935 Cost: 0.112024 Iter: 940 Cost: 0.110094 Iter: 945 Cost: 0.108199 Iter: 950 Cost: 0.106340 Iter: 955 Cost: 0.104516 Iter: 960 Cost: 0.102726 Iter: 965 Cost: 0.100970 Iter: 970 Cost: 0.099246 Iter: 975 Cost: 0.097555 Iter: 980 Cost: 0.095895 Iter: 985 Cost: 0.094265 Iter: 990 Cost: 0.092667 Iter: 995 Cost: 0.091097 iters = np.arange(1000) plt.plot(iters, cost_history) [<matplotlib.lines.Line2D at 0x7fb27b4052b0>]

由回歸到分類

In this task, I just use the watermelon dataset which is shown below.

Logistic Regression ( Binary Classification)的實際編碼

Dataset

import numpy as np import seaborn as sns import pandas as pd import matplotlib.pyplot as plt import math def createDataSet():"""創(chuàng)建測試的數(shù)據(jù)集,里面的數(shù)值中具有連續(xù)值:return:"""dataSet = [# 1['青綠', '蜷縮', '濁響', '清晰', '凹陷', '硬滑', 0.697, 0.460, '好瓜'],# 2['烏黑', '蜷縮', '沉悶', '清晰', '凹陷', '硬滑', 0.774, 0.376, '好瓜'],# 3['烏黑', '蜷縮', '濁響', '清晰', '凹陷', '硬滑', 0.634, 0.264, '好瓜'],# 4['青綠', '蜷縮', '沉悶', '清晰', '凹陷', '硬滑', 0.608, 0.318, '好瓜'],# 5['淺白', '蜷縮', '濁響', '清晰', '凹陷', '硬滑', 0.556, 0.215, '好瓜'],# 6['青綠', '稍蜷', '濁響', '清晰', '稍凹', '軟粘', 0.403, 0.237, '好瓜'],# 7['烏黑', '稍蜷', '濁響', '稍糊', '稍凹', '軟粘', 0.481, 0.149, '好瓜'],# 8['烏黑', '稍蜷', '濁響', '清晰', '稍凹', '硬滑', 0.437, 0.211, '好瓜'],# ----------------------------------------------------# 9['烏黑', '稍蜷', '沉悶', '稍糊', '稍凹', '硬滑', 0.666, 0.091, '壞瓜'],# 10['青綠', '硬挺', '清脆', '清晰', '平坦', '軟粘', 0.243, 0.267, '壞瓜'],# 11['淺白', '硬挺', '清脆', '模糊', '平坦', '硬滑', 0.245, 0.057, '壞瓜'],# 12['淺白', '蜷縮', '濁響', '模糊', '平坦', '軟粘', 0.343, 0.099, '壞瓜'],# 13['青綠', '稍蜷', '濁響', '稍糊', '凹陷', '硬滑', 0.639, 0.161, '壞瓜'],# 14['淺白', '稍蜷', '沉悶', '稍糊', '凹陷', '硬滑', 0.657, 0.198, '壞瓜'],# 15['烏黑', '稍蜷', '濁響', '清晰', '稍凹', '軟粘', 0.360, 0.370, '壞瓜'],# 16['淺白', '蜷縮', '濁響', '模糊', '平坦', '硬滑', 0.593, 0.042, '壞瓜'],# 17['青綠', '蜷縮', '沉悶', '稍糊', '稍凹', '硬滑', 0.719, 0.103, '壞瓜']]return dataSet dataSet = createDataSet() dataSet = np.array(dataSet)[:, 6:] dataSet[dataSet == '好瓜'] = 1 dataSet[dataSet == '壞瓜'] = 0 dataSet = dataSet.astype('float64') dataSet array([[0.697, 0.46 , 1. ],[0.774, 0.376, 1. ],[0.634, 0.264, 1. ],[0.608, 0.318, 1. ],[0.556, 0.215, 1. ],[0.403, 0.237, 1. ],[0.481, 0.149, 1. ],[0.437, 0.211, 1. ],[0.666, 0.091, 0. ],[0.243, 0.267, 0. ],[0.245, 0.057, 0. ],[0.343, 0.099, 0. ],[0.639, 0.161, 0. ],[0.657, 0.198, 0. ],[0.36 , 0.37 , 0. ],[0.593, 0.042, 0. ],[0.719, 0.103, 0. ]])

Visulization

data_in_frame = pd.DataFrame(data=dataSet, columns=["density", "sugar_ratio","label"]) data_in_frame densitysugar_ratiolabel012345678910111213141516
0.6970.4601.0
0.7740.3761.0
0.6340.2641.0
0.6080.3181.0
0.5560.2151.0
0.4030.2371.0
0.4810.1491.0
0.4370.2111.0
0.6660.0910.0
0.2430.2670.0
0.2450.0570.0
0.3430.0990.0
0.6390.1610.0
0.6570.1980.0
0.3600.3700.0
0.5930.0420.0
0.7190.1030.0
sns.scatterplot(data=data_in_frame, x='density', y="sugar_ratio", hue="label") <matplotlib.axes._subplots.AxesSubplot at 0x7fc81b79f080>

Prediction Format

\begin{split}p \geq 0.5, class=1 \
p < 0.5, class=0\end{split}

\begin{split}P(class=1) = \frac{1} {1 + e^{-z}}\end{split}

def sigmoid(x, derivative=False):sigm = 1. / (1. + np.exp(-x))if derivative:return sigm * (1. - sigm)return sigm def predict(features, weights):"""features: sample size * feature sizeweights: feature size * 1"""weights = weights.reshape(len(weights),1)z = np.dot(features, weights)return sigmoid(z)

How could we do here? From Watermelon_book, we know that we can use MLE to estimate the parameters.

Meanwhile we can also repeat what we did in last experiment where we just included a cost function and optimized the patameters by decrease the cost function.

Cost function

We can still use MSE as a cost function. But here what we use is called cross-entroy function actually. The reason why we abandon the previous one is another topic. Basicly, it’s because of non-linear tranformation.

\begin{split}-{(y\log§ + (1 - y)\log(1 - p))}\end{split}

def cost_function(features, weights, labels):weights = weights.reshape(len(weights),1)labels = labels.reshape(len(labels),1)y = predict(features, weights)class1_cost = -labels*np.log(y)class2_cost = -labels*np.log(y)cost = (class1_cost + class2_cost).sum()/len(labels)return cost

Gradient descent

\begin{align}
s’(z) & = s(z)(1 - s(z))
\end{align}

\begin{split}C’ = x(s(z) - y)\end{split}

def update_weights(features, weights, labels, learning_rate):weights = weights.reshape(len(weights),1)labels = labels.reshape(len(labels),1)p = predict(features, weights)gradient = np.dot(features.T, p - labels) / len(labels)weights = weights - gradient*learning_ratereturn weights

Training

def training(features, weights, labels, learning_rate, iters):cost_history = []for i in range(iters):weights = update_weights(features, weights, labels, learning_rate)cost = cost_function(features, weights, labels)cost_history.append(cost)if i%1000 == 0:print("iters is %d \t \t cost is %f"%(i, cost))return weights, cost_history weights_initial = np.array([0, 0]) weights, cost_history = training(dataSet[:, :2], weights_initial, dataSet[:, -1], 0.1, 20000) iters is 0 cost is 0.651950 iters is 1000 cost is 0.572514 iters is 2000 cost is 0.546478 iters is 3000 cost is 0.528388 iters is 4000 cost is 0.515437 iters is 5000 cost is 0.505936 iters is 6000 cost is 0.498829 iters is 7000 cost is 0.493431 iters is 8000 cost is 0.489282 iters is 9000 cost is 0.486062 iters is 10000 cost is 0.483545 iters is 11000 cost is 0.481564 iters is 12000 cost is 0.479999 iters is 13000 cost is 0.478757 iters is 14000 cost is 0.477769 iters is 15000 cost is 0.476981 iters is 16000 cost is 0.476351 iters is 17000 cost is 0.475847 iters is 18000 cost is 0.475443 iters is 19000 cost is 0.475119

Model evaluation

Visulization

iters = np.arange(20000) plt.plot(iters, cost_history) [<matplotlib.lines.Line2D at 0x7fc819b8eda0>]

From the fig abobe, we can think the cost function may still decrease when we update the weights furthur.

Mapping probabilities to classes

def classify(predictions):predictions[predictions >= 0.5 ] = 1predictions[predictions < 0.5 ] = 0return predictions def accuracy(predictions, labels):predictions = predictions.astype('int').reshape(len(predictions,))labels = labels.astype('int')diff = np.abs(predictions - labels)same = len(labels) - diff.sum()return same/len(labels) predicted_label = classify(predict(dataSet[:, :2], weights)) accuracy(predicted_label, dataSet[:, -1]) 0.8235294117647058

總結(jié)

以上是生活随笔為你收集整理的[Watermelon_book] Chapter 3 Linear Model的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。

国产成人av免费观看 | 又大又硬又黄的免费视频 | 久久国产精品精品国产色婷婷 | 人人妻人人澡人人爽欧美一区 | 亚洲欧美国产精品专区久久 | 久久精品女人的天堂av | 亚洲一区二区三区国产精华液 | 无码帝国www无码专区色综合 | 国产亚av手机在线观看 | 午夜精品一区二区三区在线观看 | 1000部啪啪未满十八勿入下载 | 国产色在线 | 国产 | 夜夜躁日日躁狠狠久久av | 久久精品人妻少妇一区二区三区 | 性啪啪chinese东北女人 | 亚洲色www成人永久网址 | 成人女人看片免费视频放人 | 正在播放东北夫妻内射 | 亚洲欧美日韩成人高清在线一区 | 又色又爽又黄的美女裸体网站 | 无码精品人妻一区二区三区av | 国产偷自视频区视频 | 午夜无码区在线观看 | 丰满护士巨好爽好大乳 | 99精品久久毛片a片 | 精品人妻av区 | 欧美日韩视频无码一区二区三 | 亚洲无人区一区二区三区 | 日本乱偷人妻中文字幕 | 亚洲精品无码人妻无码 | 内射老妇bbwx0c0ck | 无遮挡啪啪摇乳动态图 | 国产真实夫妇视频 | 国产熟妇高潮叫床视频播放 | 51国偷自产一区二区三区 | 国产激情综合五月久久 | 久久国语露脸国产精品电影 | 色诱久久久久综合网ywww | 18无码粉嫩小泬无套在线观看 | 纯爱无遮挡h肉动漫在线播放 | 国产精品18久久久久久麻辣 | 99久久精品日本一区二区免费 | 女人和拘做爰正片视频 | 日韩欧美群交p片內射中文 | 99久久久无码国产aaa精品 | 中文字幕人妻丝袜二区 | 性色欲网站人妻丰满中文久久不卡 | 日日麻批免费40分钟无码 | 亚洲热妇无码av在线播放 | 日韩精品久久久肉伦网站 | 风流少妇按摩来高潮 | 乱码午夜-极国产极内射 | 久久精品国产日本波多野结衣 | 亚洲呦女专区 | 欧美三级不卡在线观看 | 欧美日韩一区二区三区自拍 | 99久久久无码国产精品免费 | 欧美性色19p | 亚洲国产精品一区二区美利坚 | 日本一卡二卡不卡视频查询 | 免费无码的av片在线观看 | 精品无码国产一区二区三区av | 亚洲成色在线综合网站 | 在线а√天堂中文官网 | 国产美女极度色诱视频www | 中文精品无码中文字幕无码专区 | 欧洲极品少妇 | 少妇无码av无码专区在线观看 | 理论片87福利理论电影 | 中文字幕av日韩精品一区二区 | 色一情一乱一伦一视频免费看 | 色情久久久av熟女人妻网站 | 综合激情五月综合激情五月激情1 | 乱码av麻豆丝袜熟女系列 | 欧美乱妇无乱码大黄a片 | 中文字幕乱码人妻无码久久 | 国产精品嫩草久久久久 | 国产69精品久久久久app下载 | 国产免费无码一区二区视频 | 麻豆国产97在线 | 欧洲 | 性生交片免费无码看人 | 18禁止看的免费污网站 | 四虎国产精品一区二区 | 男人的天堂2018无码 | 天天爽夜夜爽夜夜爽 | 日日碰狠狠丁香久燥 | 爱做久久久久久 | 久久国产精品二国产精品 | 女人高潮内射99精品 | a在线亚洲男人的天堂 | 欧美精品免费观看二区 | 牲欲强的熟妇农村老妇女 | 欧美成人高清在线播放 | 美女扒开屁股让男人桶 | 最新国产麻豆aⅴ精品无码 | 一本久久a久久精品vr综合 | 国产精品理论片在线观看 | 国产精品自产拍在线观看 | 内射爽无广熟女亚洲 | 老熟女重囗味hdxx69 | 无码国产色欲xxxxx视频 | 性生交片免费无码看人 | 东京一本一道一二三区 | 人妻天天爽夜夜爽一区二区 | 欧美35页视频在线观看 | 国产精品怡红院永久免费 | 国产成人综合色在线观看网站 | 性欧美疯狂xxxxbbbb | 99久久99久久免费精品蜜桃 | 精品成在人线av无码免费看 | 在线精品国产一区二区三区 | 欧美丰满老熟妇xxxxx性 | 国产小呦泬泬99精品 | 亚洲人成影院在线观看 | 无码精品人妻一区二区三区av | 四虎4hu永久免费 | 久久国产精品萌白酱免费 | 亲嘴扒胸摸屁股激烈网站 | 我要看www免费看插插视频 | 日韩精品无码免费一区二区三区 | 国产人成高清在线视频99最全资源 | 精品国偷自产在线 | 牲欲强的熟妇农村老妇女 | 无码人妻黑人中文字幕 | 色欲av亚洲一区无码少妇 | 国产综合色产在线精品 | 亚洲の无码国产の无码步美 | 亚洲а∨天堂久久精品2021 | 亚洲の无码国产の无码影院 | 国产两女互慰高潮视频在线观看 | 一二三四社区在线中文视频 | 97人妻精品一区二区三区 | 中文无码精品a∨在线观看不卡 | 久久精品女人天堂av免费观看 | 国产国语老龄妇女a片 | 啦啦啦www在线观看免费视频 | 国产亚洲精品久久久闺蜜 | 久久无码中文字幕免费影院蜜桃 | 欧美三级不卡在线观看 | 2020久久香蕉国产线看观看 | 鲁鲁鲁爽爽爽在线视频观看 | 巨爆乳无码视频在线观看 | 国产 浪潮av性色四虎 | 人妻少妇精品久久 | 亚洲色欲色欲欲www在线 | 少妇性俱乐部纵欲狂欢电影 | 亚洲爆乳精品无码一区二区三区 | 青草视频在线播放 | 2019nv天堂香蕉在线观看 | 女人被爽到呻吟gif动态图视看 | 51国偷自产一区二区三区 | 午夜福利一区二区三区在线观看 | 四十如虎的丰满熟妇啪啪 | 精品偷拍一区二区三区在线看 | 成人动漫在线观看 | 日韩成人一区二区三区在线观看 | 国产欧美熟妇另类久久久 | 国产午夜福利亚洲第一 | 午夜福利试看120秒体验区 | 欧美真人作爱免费视频 | 成在人线av无码免观看麻豆 | 欧美兽交xxxx×视频 | 欧美熟妇另类久久久久久不卡 | 亚洲无人区午夜福利码高清完整版 | 色综合久久久无码网中文 | 国产精品无码成人午夜电影 | 麻花豆传媒剧国产免费mv在线 | 日本一区二区更新不卡 | 2019午夜福利不卡片在线 | 波多野结衣av一区二区全免费观看 | 亚洲人成网站在线播放942 | 国产明星裸体无码xxxx视频 | 麻豆蜜桃av蜜臀av色欲av | 水蜜桃av无码 | 色婷婷欧美在线播放内射 | 日日摸夜夜摸狠狠摸婷婷 | 国内精品久久久久久中文字幕 | 美女极度色诱视频国产 | 亚洲一区二区三区含羞草 | 精品人妻人人做人人爽夜夜爽 | 疯狂三人交性欧美 | 色综合久久久无码网中文 | 婷婷综合久久中文字幕蜜桃三电影 | 日韩精品一区二区av在线 | 日韩精品无码一本二本三本色 | 亚洲gv猛男gv无码男同 | 四虎国产精品一区二区 | 亚洲成在人网站无码天堂 | 色欲人妻aaaaaaa无码 | 人人妻人人澡人人爽人人精品浪潮 | 亚洲午夜无码久久 | 丰满人妻精品国产99aⅴ | 麻豆国产丝袜白领秘书在线观看 | 国产精品无套呻吟在线 | 国内揄拍国内精品人妻 | 中文字幕人妻无码一区二区三区 | 久久国产精品萌白酱免费 | 中文字幕无码视频专区 | 国产亚洲精品久久久久久国模美 | 久久精品99久久香蕉国产色戒 | 亚洲色欲色欲欲www在线 | 扒开双腿吃奶呻吟做受视频 | 无码精品人妻一区二区三区av | 一二三四社区在线中文视频 | 亚洲欧美中文字幕5发布 | 动漫av一区二区在线观看 | 中文字幕无码日韩专区 | 国产精品无码成人午夜电影 | 免费视频欧美无人区码 | 少妇厨房愉情理9仑片视频 | 国产精品毛多多水多 | 中文字幕av日韩精品一区二区 | 国产福利视频一区二区 | 免费视频欧美无人区码 | 亚洲精品一区二区三区四区五区 | 日韩少妇内射免费播放 | 亚洲春色在线视频 | 在线播放免费人成毛片乱码 | 狠狠色色综合网站 | 无套内谢的新婚少妇国语播放 | 99久久久国产精品无码免费 | 精品国产aⅴ无码一区二区 | 国产人妻精品一区二区三区不卡 | 亚洲精品一区二区三区在线观看 | 久久无码专区国产精品s | 激情内射亚州一区二区三区爱妻 | 永久免费观看国产裸体美女 | 精品欧美一区二区三区久久久 | www国产精品内射老师 | 国产人妻久久精品二区三区老狼 | 欧洲美熟女乱又伦 | 欧美zoozzooz性欧美 | 日本一本二本三区免费 | 免费人成网站视频在线观看 | 天天躁日日躁狠狠躁免费麻豆 | 无码任你躁久久久久久久 | 精品人妻人人做人人爽 | 亚洲精品成a人在线观看 | 久9re热视频这里只有精品 | 成 人影片 免费观看 | 精品久久久久香蕉网 | 亚洲乱码国产乱码精品精 | 无码免费一区二区三区 | 在线播放无码字幕亚洲 | 国产av无码专区亚洲a∨毛片 | 黑森林福利视频导航 | 女人被男人躁得好爽免费视频 | 精品久久综合1区2区3区激情 | 久久99精品国产麻豆蜜芽 | 国产亚洲人成a在线v网站 | 偷窥日本少妇撒尿chinese | 国产成人无码av在线影院 | 2019午夜福利不卡片在线 | 亚洲区欧美区综合区自拍区 | 国产电影无码午夜在线播放 | 男人的天堂2018无码 | 成年女人永久免费看片 | 无码午夜成人1000部免费视频 | 国产精品va在线播放 | 中文毛片无遮挡高清免费 | 亚洲午夜福利在线观看 | 亚洲精品久久久久avwww潮水 | 日日橹狠狠爱欧美视频 | 欧美丰满熟妇xxxx性ppx人交 | 一本精品99久久精品77 | 久久精品丝袜高跟鞋 | 99riav国产精品视频 | 高中生自慰www网站 | 男人的天堂2018无码 | 国产乡下妇女做爰 | 夜夜影院未满十八勿进 | 国产成人一区二区三区别 | 久久99精品久久久久久动态图 | 99国产欧美久久久精品 | 中文字幕乱码人妻二区三区 | 国産精品久久久久久久 | 亚洲爆乳大丰满无码专区 | 中文字幕无码热在线视频 | 亚洲成a人片在线观看无码3d | 波多野结衣一区二区三区av免费 | 中文字幕无码热在线视频 | 亚洲精品午夜国产va久久成人 | 水蜜桃av无码 | 国产成人精品无码播放 | 日韩av无码一区二区三区不卡 | 人妻夜夜爽天天爽三区 | 3d动漫精品啪啪一区二区中 | 国产色精品久久人妻 | 亚洲色成人中文字幕网站 | 亚洲欧美国产精品久久 | 俺去俺来也在线www色官网 | 中文字幕色婷婷在线视频 | 青青青爽视频在线观看 | 人妻插b视频一区二区三区 | 99国产精品白浆在线观看免费 | 丰满少妇人妻久久久久久 | 丰满岳乱妇在线观看中字无码 | 国产性生交xxxxx无码 | 国产精品沙发午睡系列 | 欧洲vodafone精品性 | 亚洲欧洲中文日韩av乱码 | 国产精品亚洲а∨无码播放麻豆 | 亚洲国产精品毛片av不卡在线 | 亚洲精品一区二区三区四区五区 | 亚洲精品国产第一综合99久久 | 国产精品第一区揄拍无码 | 国内丰满熟女出轨videos | 色婷婷综合激情综在线播放 | 亚洲区小说区激情区图片区 | 国产精品成人av在线观看 | 暴力强奷在线播放无码 | 丰满岳乱妇在线观看中字无码 | 亚洲精品国产第一综合99久久 | 国产精品人妻一区二区三区四 | 波多野42部无码喷潮在线 | 99精品国产综合久久久久五月天 | 国产精品久久久久无码av色戒 | 永久免费精品精品永久-夜色 | 无码国产乱人伦偷精品视频 | 国产做国产爱免费视频 | 日本丰满熟妇videos | 色综合久久久无码网中文 | 精品久久久无码中文字幕 | 国产综合久久久久鬼色 | 在线 国产 欧美 亚洲 天堂 | 婷婷综合久久中文字幕蜜桃三电影 | 最新国产麻豆aⅴ精品无码 | 精品国产一区二区三区四区 | 一本色道久久综合狠狠躁 | 粗大的内捧猛烈进出视频 | 久久综合久久自在自线精品自 | 午夜福利试看120秒体验区 | 国内少妇偷人精品视频免费 | 人妻少妇被猛烈进入中文字幕 | 99er热精品视频 | 国产精品视频免费播放 | av无码不卡在线观看免费 | 天下第一社区视频www日本 | 理论片87福利理论电影 | 亚洲人成人无码网www国产 | 精品一区二区三区无码免费视频 | 婷婷色婷婷开心五月四房播播 | 丰满妇女强制高潮18xxxx | 国产真人无遮挡作爱免费视频 | 一本久久a久久精品亚洲 | 久久精品视频在线看15 | 动漫av一区二区在线观看 | 色综合久久久久综合一本到桃花网 | 亚洲日本va午夜在线电影 | 免费视频欧美无人区码 | 国产成人人人97超碰超爽8 | 亚洲七七久久桃花影院 | 亚欧洲精品在线视频免费观看 | 亚洲欧美中文字幕5发布 | 人妻无码久久精品人妻 | 婷婷五月综合激情中文字幕 | 国产黑色丝袜在线播放 | 精品国偷自产在线视频 | 丰满人妻精品国产99aⅴ | 狠狠综合久久久久综合网 | 亚洲精品一区二区三区四区五区 | 亚洲精品国产品国语在线观看 | 亚洲精品无码国产 | 动漫av网站免费观看 | 国产一区二区三区四区五区加勒比 | 红桃av一区二区三区在线无码av | 国产精品美女久久久 | 97精品国产97久久久久久免费 | 久久亚洲精品中文字幕无男同 | 青青久在线视频免费观看 | 亚洲人成影院在线无码按摩店 | 国产高清不卡无码视频 | 99久久精品日本一区二区免费 | 精品午夜福利在线观看 | 国产美女极度色诱视频www | 俺去俺来也在线www色官网 | 欧美freesex黑人又粗又大 | 狠狠色丁香久久婷婷综合五月 | 精品国产乱码久久久久乱码 | 玩弄中年熟妇正在播放 | 日本熟妇乱子伦xxxx | 性史性农村dvd毛片 | 久久久久人妻一区精品色欧美 | 精品久久久久久人妻无码中文字幕 | 久热国产vs视频在线观看 | 一个人看的www免费视频在线观看 | 少妇人妻av毛片在线看 | 亚洲第一无码av无码专区 | 亚洲 欧美 激情 小说 另类 | 爱做久久久久久 | а√资源新版在线天堂 | 少妇人妻偷人精品无码视频 | a在线观看免费网站大全 | 熟妇人妻激情偷爽文 | 国产成人一区二区三区在线观看 | 又黄又爽又色的视频 | 国产两女互慰高潮视频在线观看 | 色婷婷欧美在线播放内射 | 午夜精品久久久久久久 | 亚洲精品www久久久 | 国产精品久免费的黄网站 | 国内精品人妻无码久久久影院蜜桃 | 国产亚洲精品久久久久久国模美 | 中文精品无码中文字幕无码专区 | 成 人影片 免费观看 | 国产va免费精品观看 | 国产亚洲精品久久久久久久久动漫 | 丰满岳乱妇在线观看中字无码 | 亚洲中文字幕无码一久久区 | 又紧又大又爽精品一区二区 | 精品亚洲韩国一区二区三区 | 国产免费观看黄av片 | 亚洲男人av香蕉爽爽爽爽 | 成人三级无码视频在线观看 | 欧美日韩亚洲国产精品 | 欧美人与动性行为视频 | 蜜臀av在线播放 久久综合激激的五月天 | 青青草原综合久久大伊人精品 | 无码人中文字幕 | 在线看片无码永久免费视频 | 东京热一精品无码av | 麻花豆传媒剧国产免费mv在线 | 99久久精品无码一区二区毛片 | 天海翼激烈高潮到腰振不止 | 亚洲人成无码网www | 国内精品久久久久久中文字幕 | 97无码免费人妻超级碰碰夜夜 | 日日摸天天摸爽爽狠狠97 | 国产热a欧美热a在线视频 | 中文毛片无遮挡高清免费 | 人人妻人人澡人人爽欧美一区 | 国精品人妻无码一区二区三区蜜柚 | 中文亚洲成a人片在线观看 | 成人免费视频视频在线观看 免费 | 日本熟妇浓毛 | 久久精品成人欧美大片 | 亚洲精品一区二区三区婷婷月 | 成人免费视频视频在线观看 免费 | 国产成人无码av在线影院 | 人人澡人人妻人人爽人人蜜桃 | 又大又硬又黄的免费视频 | 色五月五月丁香亚洲综合网 | 宝宝好涨水快流出来免费视频 | 日日摸夜夜摸狠狠摸婷婷 | 国产亚洲欧美在线专区 | 精品国产成人一区二区三区 | 偷窥村妇洗澡毛毛多 | 国产亚洲精品久久久ai换 | 国内少妇偷人精品视频免费 | 无套内射视频囯产 | 欧美成人家庭影院 | 国产片av国语在线观看 | 精品乱子伦一区二区三区 | 奇米影视7777久久精品人人爽 | 狠狠色噜噜狠狠狠狠7777米奇 | 久久伊人色av天堂九九小黄鸭 | 国产在线无码精品电影网 | 乱人伦人妻中文字幕无码 | 国产亚洲欧美在线专区 | 少妇无套内谢久久久久 | 国产乱码精品一品二品 | 在线播放免费人成毛片乱码 | 欧美35页视频在线观看 | 欧美日韩一区二区免费视频 | 亚洲欧美中文字幕5发布 | 狂野欧美性猛xxxx乱大交 | 无码精品国产va在线观看dvd | 欧美精品免费观看二区 | 亚洲成色www久久网站 | 波多野结衣av一区二区全免费观看 | 亚洲欧洲日本无在线码 | 国产午夜精品一区二区三区嫩草 | 成人综合网亚洲伊人 | 亚洲高清偷拍一区二区三区 | 亚洲色大成网站www国产 | 亚洲男人av香蕉爽爽爽爽 | 久久久久久久人妻无码中文字幕爆 | 国产亚洲精品久久久久久久 | 国产午夜视频在线观看 | 日韩在线不卡免费视频一区 | 国产亚洲日韩欧美另类第八页 | 黑森林福利视频导航 | 亚洲 日韩 欧美 成人 在线观看 | 欧美日韩精品 | 99久久无码一区人妻 | 一本久道久久综合婷婷五月 | 波多野结衣一区二区三区av免费 | 日本一区二区更新不卡 | 久久精品一区二区三区四区 | 国产卡一卡二卡三 | 日韩精品无码一本二本三本色 | 性生交大片免费看女人按摩摩 | 国产一精品一av一免费 | 人妻天天爽夜夜爽一区二区 | 亚洲国产精品毛片av不卡在线 | 色妞www精品免费视频 | 精品乱子伦一区二区三区 | 久9re热视频这里只有精品 | 亚洲成av人影院在线观看 | 亚洲成a人片在线观看日本 | 久久精品人人做人人综合 | 欧美性生交xxxxx久久久 | 蜜桃臀无码内射一区二区三区 | 成在人线av无码免费 | 人妻无码久久精品人妻 | 中文字幕+乱码+中文字幕一区 | 99久久久无码国产精品免费 | 亚洲国产精品一区二区美利坚 | 伦伦影院午夜理论片 | 中文字幕人妻丝袜二区 | 亚洲精品一区二区三区婷婷月 | 成人女人看片免费视频放人 | 中文字幕乱码人妻无码久久 | 色噜噜亚洲男人的天堂 | 97色伦图片97综合影院 | 国产精品久久久久无码av色戒 | 日本大乳高潮视频在线观看 | 久久久久免费精品国产 | 亚洲爆乳精品无码一区二区三区 | 国产精品久久久午夜夜伦鲁鲁 | 久久亚洲国产成人精品性色 | 久久99国产综合精品 | 天天拍夜夜添久久精品大 | 99精品无人区乱码1区2区3区 | 成熟女人特级毛片www免费 | 亚洲乱码国产乱码精品精 | 久久久精品人妻久久影视 | 久久久成人毛片无码 | 久久久久久a亚洲欧洲av冫 | 国产无套内射久久久国产 | 丰满肥臀大屁股熟妇激情视频 | 一本久久伊人热热精品中文字幕 | 一本久道高清无码视频 | 亚洲一区av无码专区在线观看 | 377p欧洲日本亚洲大胆 | aa片在线观看视频在线播放 | 免费无码一区二区三区蜜桃大 | 免费观看黄网站 | 亚洲中文字幕无码中文字在线 | 久久99久久99精品中文字幕 | 亚洲男人av天堂午夜在 | 日欧一片内射va在线影院 | 久久无码中文字幕免费影院蜜桃 | 麻豆人妻少妇精品无码专区 | 女高中生第一次破苞av | 三级4级全黄60分钟 | 无码乱肉视频免费大全合集 | 久久综合香蕉国产蜜臀av | 国产精品无码久久av | 亚洲中文字幕乱码av波多ji | 日韩精品成人一区二区三区 | 久久国产精品偷任你爽任你 | 少妇性俱乐部纵欲狂欢电影 | 露脸叫床粗话东北少妇 | 亚洲色欲色欲欲www在线 | 免费国产黄网站在线观看 | 国产热a欧美热a在线视频 | 免费无码肉片在线观看 | 给我免费的视频在线观看 | 国产99久久精品一区二区 | 青草青草久热国产精品 | 小sao货水好多真紧h无码视频 | 日韩欧美中文字幕公布 | 亚洲日韩乱码中文无码蜜桃臀网站 | 小泽玛莉亚一区二区视频在线 | 扒开双腿吃奶呻吟做受视频 | 久久久久久国产精品无码下载 | 久久天天躁夜夜躁狠狠 | 麻豆md0077饥渴少妇 | 国产精品99久久精品爆乳 | 中国女人内谢69xxxxxa片 | 又湿又紧又大又爽a视频国产 | 国产综合久久久久鬼色 | 国产成人精品必看 | 国产午夜视频在线观看 | 精品日本一区二区三区在线观看 | 国产口爆吞精在线视频 | 国产真实伦对白全集 | 蜜臀aⅴ国产精品久久久国产老师 | 精品一区二区三区波多野结衣 | 国产成人无码区免费内射一片色欲 | 婷婷色婷婷开心五月四房播播 | 成 人 网 站国产免费观看 | 人人超人人超碰超国产 | 久久婷婷五月综合色国产香蕉 | 亚洲中文字幕在线观看 | 国产情侣作爱视频免费观看 | 国产精品亚洲五月天高清 | 强辱丰满人妻hd中文字幕 | 亚洲狠狠婷婷综合久久 | 国产成人精品优优av | a在线亚洲男人的天堂 | 欧美丰满熟妇xxxx | 老熟女重囗味hdxx69 | 亚洲欧美精品aaaaaa片 | 日日麻批免费40分钟无码 | 最近免费中文字幕中文高清百度 | 18精品久久久无码午夜福利 | 2020最新国产自产精品 | 暴力强奷在线播放无码 | 久久国语露脸国产精品电影 | 亚洲精品国产精品乱码视色 | 给我免费的视频在线观看 | 久久综合九色综合97网 | 国产精品va在线播放 | 帮老师解开蕾丝奶罩吸乳网站 | 无码人妻丰满熟妇区毛片18 | 欧美日韩综合一区二区三区 | 久久99精品久久久久久动态图 | 国产香蕉尹人视频在线 | 国内精品一区二区三区不卡 | 啦啦啦www在线观看免费视频 | 色五月丁香五月综合五月 | 大胆欧美熟妇xx | 国产熟妇另类久久久久 | 国产情侣作爱视频免费观看 | 性欧美疯狂xxxxbbbb | 乌克兰少妇xxxx做受 | 欧美黑人巨大xxxxx | 俺去俺来也在线www色官网 | 欧美精品在线观看 | 波多野结衣av在线观看 | 精品无码一区二区三区的天堂 | 国产成人无码av一区二区 | 日韩欧美中文字幕公布 | 51国偷自产一区二区三区 | 国内精品久久毛片一区二区 | 曰韩少妇内射免费播放 | 性啪啪chinese东北女人 | 无人区乱码一区二区三区 | 鲁鲁鲁爽爽爽在线视频观看 | 日韩 欧美 动漫 国产 制服 | 国产精品国产三级国产专播 | 亚洲乱码中文字幕在线 | 国产亚洲精品久久久久久 | 精品人妻中文字幕有码在线 | √8天堂资源地址中文在线 | 秋霞特色aa大片 | 老熟女重囗味hdxx69 | 男女爱爱好爽视频免费看 | 国产9 9在线 | 中文 | 国产av一区二区三区最新精品 | 图片区 小说区 区 亚洲五月 | 亚洲性无码av中文字幕 | 国产电影无码午夜在线播放 | 两性色午夜免费视频 | 国产精品成人av在线观看 | 久久精品人人做人人综合试看 | 又湿又紧又大又爽a视频国产 | 午夜免费福利小电影 | 秋霞成人午夜鲁丝一区二区三区 | 国产真实伦对白全集 | 激情内射日本一区二区三区 | 日本乱偷人妻中文字幕 | 无套内射视频囯产 | 亚洲色欲色欲天天天www | 99久久精品日本一区二区免费 | 免费无码肉片在线观看 | 女高中生第一次破苞av | 永久免费精品精品永久-夜色 | 97资源共享在线视频 | 国产精品久久久久9999小说 | 亚洲国产精品一区二区美利坚 | 久久亚洲a片com人成 | 国产乱子伦视频在线播放 | 日本免费一区二区三区最新 | 99国产欧美久久久精品 | 欧美成人午夜精品久久久 | 性色欲网站人妻丰满中文久久不卡 | 亚洲国产精品久久久天堂 | 偷窥日本少妇撒尿chinese | 亚洲人交乣女bbw | 国产亚洲精品精品国产亚洲综合 | 欧洲vodafone精品性 | 夜夜高潮次次欢爽av女 | 黄网在线观看免费网站 | 永久黄网站色视频免费直播 | 国产精品久久久久久亚洲影视内衣 | 国产偷自视频区视频 | 麻豆国产人妻欲求不满谁演的 | 午夜性刺激在线视频免费 | 久久久久se色偷偷亚洲精品av | 国产无遮挡吃胸膜奶免费看 | 人妻尝试又大又粗久久 | 精品久久久久久亚洲精品 | 精品无码一区二区三区爱欲 | 色一情一乱一伦一视频免费看 | 欧美35页视频在线观看 | 久久99精品久久久久婷婷 | 秋霞成人午夜鲁丝一区二区三区 | 给我免费的视频在线观看 | 日本精品少妇一区二区三区 | 我要看www免费看插插视频 | 日本在线高清不卡免费播放 | 在线观看欧美一区二区三区 | 97资源共享在线视频 | 成人无码精品1区2区3区免费看 | 国产无遮挡又黄又爽又色 | 福利一区二区三区视频在线观看 | 国产精品久免费的黄网站 | 一本大道伊人av久久综合 | 免费无码肉片在线观看 | 日韩人妻少妇一区二区三区 | 国产一区二区三区日韩精品 | 国产精品福利视频导航 | 欧美黑人巨大xxxxx | 亚洲欧美精品伊人久久 | 亚洲中文字幕无码中文字在线 | 精品一区二区三区波多野结衣 | 欧美兽交xxxx×视频 | 人人爽人人爽人人片av亚洲 | 成年女人永久免费看片 | 波多野结衣高清一区二区三区 | 青青草原综合久久大伊人精品 | 亚洲春色在线视频 | 波多野结衣av一区二区全免费观看 | 欧美日韩综合一区二区三区 | 亚洲区欧美区综合区自拍区 | 久久国产劲爆∧v内射 | 精品国产麻豆免费人成网站 | 思思久久99热只有频精品66 | 中文字幕乱码中文乱码51精品 | 国产另类ts人妖一区二区 | 强伦人妻一区二区三区视频18 | 性欧美熟妇videofreesex | 亚洲va欧美va天堂v国产综合 | 亚洲区小说区激情区图片区 | 小sao货水好多真紧h无码视频 | 成人亚洲精品久久久久软件 | 国产精品鲁鲁鲁 | 国产香蕉97碰碰久久人人 | 国产av剧情md精品麻豆 | 麻豆果冻传媒2021精品传媒一区下载 | 免费乱码人妻系列无码专区 | 女人被男人爽到呻吟的视频 | 中文字幕无码视频专区 | 午夜熟女插插xx免费视频 | 亚洲成av人片在线观看无码不卡 | 白嫩日本少妇做爰 | 我要看www免费看插插视频 | 狠狠亚洲超碰狼人久久 | 国产成人无码av在线影院 | 红桃av一区二区三区在线无码av | 狠狠色欧美亚洲狠狠色www | 图片小说视频一区二区 | 日本在线高清不卡免费播放 | 狠狠色噜噜狠狠狠狠7777米奇 | 97久久超碰中文字幕 | 97无码免费人妻超级碰碰夜夜 | 亚洲高清偷拍一区二区三区 | 精品国偷自产在线视频 | 性欧美熟妇videofreesex | 毛片内射-百度 | 国产又爽又猛又粗的视频a片 | 亚洲欧美精品伊人久久 | 精品一区二区不卡无码av | 一个人看的www免费视频在线观看 | 97久久国产亚洲精品超碰热 | 精品无码国产一区二区三区av | www一区二区www免费 | 国产亚洲精品精品国产亚洲综合 | 国产精品人妻一区二区三区四 | 强伦人妻一区二区三区视频18 | 国产精品18久久久久久麻辣 | 波多野结衣aⅴ在线 | 久久天天躁夜夜躁狠狠 | 青青草原综合久久大伊人精品 | 久久99精品久久久久婷婷 | 一二三四社区在线中文视频 | 欧美日韩一区二区免费视频 | 午夜精品一区二区三区在线观看 | 精品午夜福利在线观看 | 夫妻免费无码v看片 | 欧美自拍另类欧美综合图片区 | 蜜桃av抽搐高潮一区二区 | 国产办公室秘书无码精品99 | 香港三级日本三级妇三级 | 人妻无码αv中文字幕久久琪琪布 | 国产精品二区一区二区aⅴ污介绍 | 午夜无码人妻av大片色欲 | 一本久道久久综合狠狠爱 | 欧洲精品码一区二区三区免费看 | 女人色极品影院 | 波多野结衣一区二区三区av免费 | 成 人 免费观看网站 | 国产农村妇女高潮大叫 | 欧美成人免费全部网站 | 精品国产一区二区三区av 性色 | 一本久道久久综合婷婷五月 | 日本一卡2卡3卡四卡精品网站 | 精品无码成人片一区二区98 | 国产精品欧美成人 | 美女扒开屁股让男人桶 | 高潮毛片无遮挡高清免费视频 | 国产av人人夜夜澡人人爽麻豆 | 最新国产麻豆aⅴ精品无码 | 特大黑人娇小亚洲女 | 嫩b人妻精品一区二区三区 | 欧美 亚洲 国产 另类 | 精品厕所偷拍各类美女tp嘘嘘 | 精品久久久中文字幕人妻 | 牲欲强的熟妇农村老妇女 | 台湾无码一区二区 | 东京一本一道一二三区 | 国产极品视觉盛宴 | 亚洲欧美综合区丁香五月小说 | 2020久久香蕉国产线看观看 | 精品久久8x国产免费观看 | 亚洲精品久久久久久久久久久 | 亚洲精品久久久久久一区二区 | 夜夜躁日日躁狠狠久久av | 天海翼激烈高潮到腰振不止 | 久精品国产欧美亚洲色aⅴ大片 | 男人和女人高潮免费网站 | 波多野结衣av一区二区全免费观看 | 色一情一乱一伦 | 中文字幕乱码人妻二区三区 | 日日鲁鲁鲁夜夜爽爽狠狠 | 国产偷国产偷精品高清尤物 | 国产熟女一区二区三区四区五区 | 婷婷五月综合激情中文字幕 | 最近免费中文字幕中文高清百度 | 黑人巨大精品欧美一区二区 | 欧美人与善在线com | 久久精品中文字幕一区 | 天天摸天天透天天添 | 国产超碰人人爽人人做人人添 | 精品厕所偷拍各类美女tp嘘嘘 | 久久国产自偷自偷免费一区调 | 亚洲国产精品毛片av不卡在线 | 亚洲 另类 在线 欧美 制服 | 999久久久国产精品消防器材 | 精品久久8x国产免费观看 | 国产深夜福利视频在线 | 亚洲综合久久一区二区 | 精品偷拍一区二区三区在线看 | 午夜精品久久久内射近拍高清 | 久久精品国产大片免费观看 | 亚洲精品一区国产 | 99国产精品白浆在线观看免费 | 麻豆国产97在线 | 欧洲 | 亚洲精品欧美二区三区中文字幕 | 玩弄少妇高潮ⅹxxxyw | 亚洲熟妇色xxxxx欧美老妇y | 男人扒开女人内裤强吻桶进去 | 大地资源中文第3页 | 理论片87福利理论电影 | 男人和女人高潮免费网站 | 国产sm调教视频在线观看 | 色五月五月丁香亚洲综合网 | 熟女俱乐部五十路六十路av | 免费国产黄网站在线观看 | 丰满少妇熟乱xxxxx视频 | 中文字幕乱码中文乱码51精品 | 欧美丰满少妇xxxx性 | 特级做a爰片毛片免费69 | 亚洲人成网站免费播放 | 午夜不卡av免费 一本久久a久久精品vr综合 | 一二三四社区在线中文视频 | 天天av天天av天天透 | 亚洲精品午夜国产va久久成人 | 精品日本一区二区三区在线观看 | 又湿又紧又大又爽a视频国产 | 亚洲色欲色欲天天天www | 无套内谢的新婚少妇国语播放 | 久久视频在线观看精品 | 亚洲精品www久久久 | 精品国产一区二区三区av 性色 | 亚洲精品中文字幕久久久久 | 亚洲高清偷拍一区二区三区 | 亚洲色偷偷偷综合网 | 亚洲日韩av一区二区三区四区 | 久久国产精品偷任你爽任你 | 国产在线无码精品电影网 | 67194成是人免费无码 | 性开放的女人aaa片 | 成人三级无码视频在线观看 | 欧美性生交活xxxxxdddd | 国产亚洲人成在线播放 | 精品一区二区三区波多野结衣 | 无码成人精品区在线观看 | 亚洲 激情 小说 另类 欧美 | 精品人人妻人人澡人人爽人人 | 婷婷色婷婷开心五月四房播播 | 日日噜噜噜噜夜夜爽亚洲精品 | 久久精品国产99久久6动漫 | 偷窥村妇洗澡毛毛多 | 色婷婷欧美在线播放内射 | 暴力强奷在线播放无码 | 丝袜 中出 制服 人妻 美腿 | 亚洲欧美综合区丁香五月小说 | 国产精品久久久久无码av色戒 | 蜜桃av蜜臀av色欲av麻 999久久久国产精品消防器材 | 国产精品va在线播放 | 波多野结衣乳巨码无在线观看 | 亚洲狠狠婷婷综合久久 | 久久久久久久久888 | 国产精品人人爽人人做我的可爱 | 国产又爽又猛又粗的视频a片 | 国产精品久久久 | 精品人妻人人做人人爽 | 蜜桃臀无码内射一区二区三区 | 亚洲一区二区三区国产精华液 | 樱花草在线播放免费中文 | 久热国产vs视频在线观看 | 少妇性俱乐部纵欲狂欢电影 | 99精品视频在线观看免费 | 少妇性l交大片欧洲热妇乱xxx | 蜜桃视频插满18在线观看 | 久久综合给合久久狠狠狠97色 | 男女性色大片免费网站 | 无码成人精品区在线观看 | 久久伊人色av天堂九九小黄鸭 | 成年女人永久免费看片 | 在线精品国产一区二区三区 | 97无码免费人妻超级碰碰夜夜 | 内射白嫩少妇超碰 | 日本免费一区二区三区最新 | 日韩av无码中文无码电影 | 亚洲精品一区二区三区四区五区 | 精品国产aⅴ无码一区二区 | 伦伦影院午夜理论片 | 亚洲性无码av中文字幕 | 亚洲精品国偷拍自产在线观看蜜桃 | 日本精品少妇一区二区三区 | 亚洲啪av永久无码精品放毛片 | √天堂资源地址中文在线 | 无码人妻丰满熟妇区毛片18 | 久久久久免费精品国产 | 纯爱无遮挡h肉动漫在线播放 | 午夜不卡av免费 一本久久a久久精品vr综合 | 蜜臀av无码人妻精品 | 免费乱码人妻系列无码专区 | 国产农村妇女aaaaa视频 撕开奶罩揉吮奶头视频 | 99久久婷婷国产综合精品青草免费 | 久久久国产一区二区三区 | 自拍偷自拍亚洲精品被多人伦好爽 | 成人免费视频视频在线观看 免费 | 人妻少妇被猛烈进入中文字幕 | 中文字幕色婷婷在线视频 | 国产亚av手机在线观看 | 天天躁日日躁狠狠躁免费麻豆 | 97se亚洲精品一区 | 亚洲s色大片在线观看 | 又紧又大又爽精品一区二区 | a片免费视频在线观看 | 国产成人综合色在线观看网站 | 国产欧美熟妇另类久久久 | 亚洲精品久久久久久久久久久 | 亚洲中文字幕av在天堂 | 伦伦影院午夜理论片 | 国精产品一品二品国精品69xx | 国产精品福利视频导航 | 又黄又爽又色的视频 | 亚洲精品久久久久久久久久久 | 日本丰满熟妇videos | 久久无码人妻影院 | 亚洲国产欧美日韩精品一区二区三区 | 欧美精品在线观看 | 亚洲成av人在线观看网址 | 欧洲精品码一区二区三区免费看 | 中国女人内谢69xxxx | 亚洲人成网站在线播放942 | 亚洲国产日韩a在线播放 | 妺妺窝人体色www在线小说 | 国产日产欧产精品精品app | 娇妻被黑人粗大高潮白浆 | www成人国产高清内射 | 亚洲精品无码人妻无码 | 无码av岛国片在线播放 | 国产乱人伦app精品久久 国产在线无码精品电影网 国产国产精品人在线视 | 免费无码肉片在线观看 | 亚洲乱码中文字幕在线 | 久久久久久久人妻无码中文字幕爆 | 欧美黑人性暴力猛交喷水 | 国产综合在线观看 | 国产免费久久精品国产传媒 | 亚洲乱亚洲乱妇50p | 亚洲成av人影院在线观看 | 亚洲欧美色中文字幕在线 | 性生交大片免费看女人按摩摩 | 国产成人精品三级麻豆 | 午夜男女很黄的视频 | 精品无人区无码乱码毛片国产 | 免费国产成人高清在线观看网站 | 久久久久久久人妻无码中文字幕爆 | 精品久久久中文字幕人妻 | 亚洲gv猛男gv无码男同 | 久久国语露脸国产精品电影 | 国産精品久久久久久久 | 丝袜 中出 制服 人妻 美腿 | 日本熟妇人妻xxxxx人hd | 黄网在线观看免费网站 | 欧美丰满熟妇xxxx性ppx人交 | 国内精品人妻无码久久久影院 | 又粗又大又硬又长又爽 | 国产99久久精品一区二区 | 九九在线中文字幕无码 | 久久 国产 尿 小便 嘘嘘 | 红桃av一区二区三区在线无码av | 四十如虎的丰满熟妇啪啪 | 日日碰狠狠躁久久躁蜜桃 | 亚洲精品鲁一鲁一区二区三区 | 亚洲a无码综合a国产av中文 | 国产精品-区区久久久狼 | 日日天日日夜日日摸 | 日产精品99久久久久久 | 成人免费视频在线观看 | 欧美日韩久久久精品a片 | 久久久久亚洲精品中文字幕 | a在线观看免费网站大全 | 性生交大片免费看女人按摩摩 | 日日麻批免费40分钟无码 | av无码不卡在线观看免费 | 亚洲中文字幕在线观看 | 日韩人妻系列无码专区 | 强奷人妻日本中文字幕 | 日韩精品无码一本二本三本色 | 亚洲va欧美va天堂v国产综合 | 国产莉萝无码av在线播放 | 美女黄网站人色视频免费国产 | 牲欲强的熟妇农村老妇女 | ass日本丰满熟妇pics | 久久久久成人片免费观看蜜芽 | 99久久婷婷国产综合精品青草免费 | 成年女人永久免费看片 | 亚洲中文无码av永久不收费 | 无码国内精品人妻少妇 | 午夜不卡av免费 一本久久a久久精品vr综合 | 丰腴饱满的极品熟妇 | 黄网在线观看免费网站 | 国产精品久免费的黄网站 | 乌克兰少妇xxxx做受 | 77777熟女视频在线观看 а天堂中文在线官网 | 久久99精品国产.久久久久 | 日日鲁鲁鲁夜夜爽爽狠狠 | 欧美阿v高清资源不卡在线播放 | 高清无码午夜福利视频 | 国产精品亚洲一区二区三区喷水 | 国产卡一卡二卡三 | 亚洲s色大片在线观看 | 人妻插b视频一区二区三区 | 黑人玩弄人妻中文在线 | 性欧美熟妇videofreesex | 国产性生交xxxxx无码 | 国产超碰人人爽人人做人人添 | 成 人 免费观看网站 | 国产真人无遮挡作爱免费视频 | 国产性猛交╳xxx乱大交 国产精品久久久久久无码 欧洲欧美人成视频在线 | 综合人妻久久一区二区精品 | 国产精品无码mv在线观看 | 一本色道久久综合狠狠躁 | 国产精品久久久av久久久 | a在线观看免费网站大全 | 无码人妻久久一区二区三区不卡 | 夫妻免费无码v看片 | 亚洲男人av香蕉爽爽爽爽 | 国产精品人妻一区二区三区四 | 在线а√天堂中文官网 | 东京热无码av男人的天堂 | 成人aaa片一区国产精品 | 中文字幕av伊人av无码av | 四虎国产精品免费久久 | 欧美 日韩 亚洲 在线 | 色婷婷av一区二区三区之红樱桃 | 激情爆乳一区二区三区 | 色五月丁香五月综合五月 | 国产精品久久久午夜夜伦鲁鲁 | 内射白嫩少妇超碰 | 午夜嘿嘿嘿影院 | 人人爽人人爽人人片av亚洲 | 亚欧洲精品在线视频免费观看 | 精品久久久中文字幕人妻 | 国产午夜无码精品免费看 | 色爱情人网站 | 欧美 日韩 亚洲 在线 | 久久国内精品自在自线 | 国产亚洲精品久久久久久国模美 | 成人一在线视频日韩国产 | 大地资源中文第3页 | 无码av中文字幕免费放 | 亚洲国精产品一二二线 | 麻豆精产国品 | 又粗又大又硬又长又爽 | 国产精品无码一区二区桃花视频 | 无码人妻出轨黑人中文字幕 | 丝袜人妻一区二区三区 | 精品国产一区二区三区av 性色 | 久久精品女人天堂av免费观看 | 东京热一精品无码av | 色综合久久久久综合一本到桃花网 | 荫蒂添的好舒服视频囗交 | 国产综合色产在线精品 | 日本欧美一区二区三区乱码 | 天天摸天天碰天天添 | 国产日产欧产精品精品app | 久久综合香蕉国产蜜臀av | 在线 国产 欧美 亚洲 天堂 | 国产精品亚洲专区无码不卡 | 牛和人交xxxx欧美 | 国产亚洲欧美日韩亚洲中文色 | 99久久久无码国产精品免费 | 国产精品办公室沙发 | 日本一卡2卡3卡四卡精品网站 | 亚洲国产欧美在线成人 | 国内丰满熟女出轨videos | 久久天天躁夜夜躁狠狠 | 国产精品久久久久久久9999 | 东京热男人av天堂 | 无套内谢老熟女 | 国产亚洲视频中文字幕97精品 | 大地资源中文第3页 | 亚洲日本va午夜在线电影 | 97久久精品无码一区二区 | 强伦人妻一区二区三区视频18 | 人妻互换免费中文字幕 | 黑人大群体交免费视频 | 国产人妻精品午夜福利免费 | 99久久精品无码一区二区毛片 | 久久久www成人免费毛片 | 国产午夜亚洲精品不卡下载 | 亚拍精品一区二区三区探花 | 欧美阿v高清资源不卡在线播放 | 日本一区二区更新不卡 | 夜夜影院未满十八勿进 | 东京一本一道一二三区 | 又湿又紧又大又爽a视频国产 | 成人无码影片精品久久久 | 夜精品a片一区二区三区无码白浆 | 免费男性肉肉影院 | 狂野欧美激情性xxxx | 色偷偷av老熟女 久久精品人妻少妇一区二区三区 | 亚洲综合另类小说色区 | 久久久久久a亚洲欧洲av冫 | 国产午夜手机精彩视频 | 亚洲国产综合无码一区 | 内射老妇bbwx0c0ck | 国产精品va在线播放 | 国产精品人人爽人人做我的可爱 | 夜夜高潮次次欢爽av女 | av无码久久久久不卡免费网站 | 疯狂三人交性欧美 | 老熟女重囗味hdxx69 | 好男人www社区 | 亚洲一区二区三区无码久久 | 亚洲人成人无码网www国产 | 中文字幕乱码人妻二区三区 | 亚洲欧洲日本综合aⅴ在线 | 精品偷拍一区二区三区在线看 | 国产成人精品必看 | 牲欲强的熟妇农村老妇女视频 | 亚洲综合在线一区二区三区 | 帮老师解开蕾丝奶罩吸乳网站 | 老熟女重囗味hdxx69 | 亚洲国产精品久久久久久 | 国产午夜福利亚洲第一 | 波多野结衣 黑人 | 亚洲爆乳无码专区 | 国产区女主播在线观看 | 2020久久香蕉国产线看观看 | 国产性生交xxxxx无码 | 亚洲 日韩 欧美 成人 在线观看 | 六月丁香婷婷色狠狠久久 | 免费网站看v片在线18禁无码 | 国产疯狂伦交大片 | 国产精品久免费的黄网站 | 日韩精品无码免费一区二区三区 | 欧美三级a做爰在线观看 | 精品无码国产一区二区三区av | 99国产精品白浆在线观看免费 | 一本精品99久久精品77 | 日本免费一区二区三区最新 | 波多野结衣高清一区二区三区 | 3d动漫精品啪啪一区二区中 | 国产成人综合色在线观看网站 | 欧美真人作爱免费视频 | 欧美日本免费一区二区三区 | 狠狠亚洲超碰狼人久久 | 亚洲综合精品香蕉久久网 | 亚洲一区av无码专区在线观看 | 色情久久久av熟女人妻网站 | 欧美丰满熟妇xxxx | 日本成熟视频免费视频 | 精品国产一区二区三区av 性色 | 亚洲欧美日韩国产精品一区二区 | 丝袜 中出 制服 人妻 美腿 | 国产美女极度色诱视频www | 99视频精品全部免费免费观看 | 亚洲乱码国产乱码精品精 | 国产亚洲欧美在线专区 | 久久99国产综合精品 | 成人精品视频一区二区 | 人妻夜夜爽天天爽三区 | 中文字幕人成乱码熟女app | 欧美猛少妇色xxxxx | 97资源共享在线视频 | 国产成人精品一区二区在线小狼 | 国产精品久久国产精品99 | 精品一区二区不卡无码av | 亚洲成a人片在线观看无码3d | 欧洲精品码一区二区三区免费看 | 水蜜桃av无码 | 久久亚洲国产成人精品性色 | 国产精品18久久久久久麻辣 | 国产午夜福利亚洲第一 | 久久国语露脸国产精品电影 | 人人爽人人澡人人高潮 | 国产又爽又黄又刺激的视频 | 国产国产精品人在线视 | 日韩人妻少妇一区二区三区 | 国产精品视频免费播放 | 天下第一社区视频www日本 | 午夜福利试看120秒体验区 | 国产三级精品三级男人的天堂 | 红桃av一区二区三区在线无码av | 午夜不卡av免费 一本久久a久久精品vr综合 | 澳门永久av免费网站 | 欧美丰满少妇xxxx性 | 国产精品人人妻人人爽 | 精品国精品国产自在久国产87 | 国产三级久久久精品麻豆三级 | 亚洲日韩乱码中文无码蜜桃臀网站 | 欧美性猛交内射兽交老熟妇 | 午夜不卡av免费 一本久久a久久精品vr综合 | 欧美黑人乱大交 | 亚洲成av人片在线观看无码不卡 | 亚欧洲精品在线视频免费观看 | 亚洲综合精品香蕉久久网 | 少妇高潮喷潮久久久影院 | 国产精品对白交换视频 | 天天躁夜夜躁狠狠是什么心态 | 久久无码专区国产精品s | 一区二区三区高清视频一 | 天堂а√在线地址中文在线 | 久久zyz资源站无码中文动漫 | 亚洲色欲久久久综合网东京热 | 伊人久久大香线蕉午夜 | 亚洲综合在线一区二区三区 | 欧美三级不卡在线观看 | www国产亚洲精品久久久日本 | 国产97人人超碰caoprom | 成人精品视频一区二区三区尤物 | 大胆欧美熟妇xx | 最近免费中文字幕中文高清百度 | 亚洲aⅴ无码成人网站国产app | 少妇高潮一区二区三区99 | 免费网站看v片在线18禁无码 | 国产av一区二区精品久久凹凸 | 色欲人妻aaaaaaa无码 | 激情内射亚州一区二区三区爱妻 | 亚洲va欧美va天堂v国产综合 | 丝袜 中出 制服 人妻 美腿 | 国产综合在线观看 | 国产麻豆精品精东影业av网站 | 久久综合网欧美色妞网 | 亚洲码国产精品高潮在线 | 日日摸天天摸爽爽狠狠97 | 丰满人妻翻云覆雨呻吟视频 | 午夜精品久久久久久久 | 日本一卡2卡3卡4卡无卡免费网站 国产一区二区三区影院 | 久久久亚洲欧洲日产国码αv | 无码av免费一区二区三区试看 | 娇妻被黑人粗大高潮白浆 | 国产精品第一国产精品 | 天堂а√在线地址中文在线 | 精品国产一区二区三区四区在线看 | 午夜福利试看120秒体验区 | 国产精品自产拍在线观看 | 人人妻在人人 | 国产精品久久久久9999小说 | 国产人妻大战黑人第1集 | 性欧美熟妇videofreesex | 亚洲 欧美 激情 小说 另类 | 亲嘴扒胸摸屁股激烈网站 | 亚洲熟女一区二区三区 | 国产精品久免费的黄网站 | 国产亚洲日韩欧美另类第八页 | 中文字幕无线码免费人妻 | 亚洲国产精品成人久久蜜臀 | 强开小婷嫩苞又嫩又紧视频 | 亚洲欧美色中文字幕在线 | 国产在线精品一区二区高清不卡 | 给我免费的视频在线观看 | 久久午夜无码鲁丝片午夜精品 | 偷窥日本少妇撒尿chinese | 亚洲熟女一区二区三区 | 色婷婷综合激情综在线播放 | 精品国偷自产在线视频 | 18黄暴禁片在线观看 | 亚洲色成人中文字幕网站 | 男女作爱免费网站 | 免费无码的av片在线观看 | 无码精品人妻一区二区三区av | 一个人看的www免费视频在线观看 | 扒开双腿吃奶呻吟做受视频 | 中文字幕无码人妻少妇免费 | 久久精品国产亚洲精品 | 午夜福利一区二区三区在线观看 | 内射白嫩少妇超碰 | 波多野结衣av一区二区全免费观看 | 国产三级精品三级男人的天堂 | 无码午夜成人1000部免费视频 | 久久99国产综合精品 | 国产明星裸体无码xxxx视频 | 欧美色就是色 | 亚洲成色在线综合网站 | 日本精品人妻无码77777 天堂一区人妻无码 | 国产99久久精品一区二区 | 亚洲七七久久桃花影院 | 亚洲国产精品毛片av不卡在线 | 野外少妇愉情中文字幕 | 亚洲精品美女久久久久久久 | 亚洲天堂2017无码中文 | 国产激情无码一区二区 | 国产无遮挡吃胸膜奶免费看 | 在线播放免费人成毛片乱码 | 国产午夜精品一区二区三区嫩草 | 色一情一乱一伦一视频免费看 | 男女猛烈xx00免费视频试看 | 免费国产成人高清在线观看网站 | 亚洲熟妇色xxxxx亚洲 | 欧美人与善在线com | 漂亮人妻洗澡被公强 日日躁 | 亚洲国产精品久久久久久 | 亚洲精品国产品国语在线观看 | 四虎国产精品一区二区 | 欧美刺激性大交 | 综合人妻久久一区二区精品 | 一本色道婷婷久久欧美 | 国内精品一区二区三区不卡 | 亚洲中文字幕在线观看 | 日日橹狠狠爱欧美视频 | 久久久久亚洲精品男人的天堂 | 18精品久久久无码午夜福利 | 国产成人无码a区在线观看视频app | 国产精品va在线观看无码 | 精品久久久久久人妻无码中文字幕 | 强开小婷嫩苞又嫩又紧视频 | 中文毛片无遮挡高清免费 | 人妻天天爽夜夜爽一区二区 | 亚洲 日韩 欧美 成人 在线观看 | 久久无码专区国产精品s | 久久99精品国产麻豆 | 性欧美牲交xxxxx视频 | 亚洲色在线无码国产精品不卡 | 一本一道久久综合久久 | 色综合久久88色综合天天 | 亚洲 a v无 码免 费 成 人 a v | 夜夜夜高潮夜夜爽夜夜爰爰 | 日本熟妇人妻xxxxx人hd | 亚洲精品成人福利网站 | 国内精品人妻无码久久久影院蜜桃 | 色综合视频一区二区三区 | 欧洲极品少妇 | 国产av一区二区三区最新精品 | 免费看少妇作爱视频 | 日本乱人伦片中文三区 | 亚洲精品午夜国产va久久成人 | 俺去俺来也www色官网 | 久久午夜无码鲁丝片 | 精品国产精品久久一区免费式 | 偷窥村妇洗澡毛毛多 | 国精产品一品二品国精品69xx | 99riav国产精品视频 | 丰满岳乱妇在线观看中字无码 | 国产莉萝无码av在线播放 | 清纯唯美经典一区二区 | 76少妇精品导航 | 国产偷国产偷精品高清尤物 | 波多野结衣 黑人 | 精品 日韩 国产 欧美 视频 | 亚洲天堂2017无码中文 | 亚洲欧美国产精品久久 | 暴力强奷在线播放无码 | 欧美老妇交乱视频在线观看 | a在线观看免费网站大全 | 亚洲精品国产精品乱码视色 | 国产精品丝袜黑色高跟鞋 | 国产午夜无码视频在线观看 | 真人与拘做受免费视频一 | 中文字幕中文有码在线 | 国产av无码专区亚洲a∨毛片 | 国产免费观看黄av片 | 久久久久av无码免费网 | 国产人妻人伦精品1国产丝袜 | 玩弄少妇高潮ⅹxxxyw | 国产亚洲日韩欧美另类第八页 | 国产亲子乱弄免费视频 | 国产婷婷色一区二区三区在线 | 99久久久国产精品无码免费 | 精品国产一区二区三区四区在线看 | 成人一区二区免费视频 | 亚洲欧美中文字幕5发布 | 无码人中文字幕 | 最新版天堂资源中文官网 | 亚洲精品一区二区三区大桥未久 | 爽爽影院免费观看 | 国产精品99爱免费视频 | 中文字幕色婷婷在线视频 | 丝袜足控一区二区三区 | 丝袜足控一区二区三区 | 水蜜桃亚洲一二三四在线 | 国产成人久久精品流白浆 | 红桃av一区二区三区在线无码av | 亚洲国产高清在线观看视频 | 丰满人妻翻云覆雨呻吟视频 | 牲欲强的熟妇农村老妇女视频 | 色综合久久88色综合天天 | 人人澡人摸人人添 | 97久久精品无码一区二区 | 人妻少妇精品视频专区 | 西西人体www44rt大胆高清 | 免费观看又污又黄的网站 | 成人影院yy111111在线观看 | 久久久久se色偷偷亚洲精品av | 兔费看少妇性l交大片免费 | 熟妇人妻中文av无码 | 久久99热只有频精品8 | 亚洲阿v天堂在线 | 日韩精品久久久肉伦网站 | 99久久亚洲精品无码毛片 | 宝宝好涨水快流出来免费视频 | 2020久久超碰国产精品最新 | 亚洲色欲久久久综合网东京热 | 精品人妻中文字幕有码在线 | 色综合久久久无码网中文 | 中文字幕 亚洲精品 第1页 | 国产99久久精品一区二区 | 一区二区三区高清视频一 | 狠狠cao日日穞夜夜穞av | 国内揄拍国内精品人妻 | 国产av一区二区三区最新精品 | 成 人 免费观看网站 | 99久久久无码国产aaa精品 | 国产莉萝无码av在线播放 | 欧洲精品码一区二区三区免费看 | 99精品视频在线观看免费 | 无遮无挡爽爽免费视频 | 日本高清一区免费中文视频 | 四虎国产精品一区二区 | 成在人线av无码免观看麻豆 | 国产97色在线 | 免 | 亚洲人成网站免费播放 | 欧美日韩在线亚洲综合国产人 | 欧美成人午夜精品久久久 | 无码午夜成人1000部免费视频 | 欧美乱妇无乱码大黄a片 | 国产又爽又猛又粗的视频a片 | 精品偷拍一区二区三区在线看 | 亚洲精品久久久久avwww潮水 | 黑人粗大猛烈进出高潮视频 | 亚洲熟女一区二区三区 | 久久久精品国产sm最大网站 | 熟妇人妻无乱码中文字幕 | 在线观看免费人成视频 | 特黄特色大片免费播放器图片 | 久久亚洲国产成人精品性色 | 国产深夜福利视频在线 | 1000部啪啪未满十八勿入下载 | 中文字幕无码免费久久9一区9 | 国产疯狂伦交大片 | 天下第一社区视频www日本 | 亚洲无人区一区二区三区 | 国产又粗又硬又大爽黄老大爷视 | 国产午夜精品一区二区三区嫩草 | 午夜精品久久久内射近拍高清 | 亚洲中文字幕无码一久久区 | 日韩av激情在线观看 | 极品尤物被啪到呻吟喷水 | 日欧一片内射va在线影院 | 一本色道久久综合亚洲精品不卡 | 国产婷婷色一区二区三区在线 | 日本肉体xxxx裸交 | 久久久精品成人免费观看 | 麻花豆传媒剧国产免费mv在线 | 亚洲男人av天堂午夜在 | 一个人看的视频www在线 | 日韩精品一区二区av在线 | 无码纯肉视频在线观看 | 久久亚洲国产成人精品性色 | 51国偷自产一区二区三区 | 麻豆md0077饥渴少妇 | 天天躁夜夜躁狠狠是什么心态 | 高潮喷水的毛片 | 又黄又爽又色的视频 | 岛国片人妻三上悠亚 | 国产精品无码成人午夜电影 | 欧洲欧美人成视频在线 | 久久精品人人做人人综合 | 日本护士毛茸茸高潮 | 国产成人精品一区二区在线小狼 | 国产99久久精品一区二区 | 人人澡人摸人人添 | 荫蒂被男人添的好舒服爽免费视频 | 精品亚洲成av人在线观看 | 日本一区二区三区免费播放 | 免费乱码人妻系列无码专区 | 精品人妻中文字幕有码在线 | 女人被男人爽到呻吟的视频 | 国产舌乚八伦偷品w中 | 免费看男女做好爽好硬视频 | 国产性猛交╳xxx乱大交 国产精品久久久久久无码 欧洲欧美人成视频在线 | 少妇性荡欲午夜性开放视频剧场 | 亚洲成av人影院在线观看 | 久久午夜无码鲁丝片秋霞 | 亚洲色欲色欲欲www在线 | 大屁股大乳丰满人妻 | 亚洲人成网站免费播放 | 欧美怡红院免费全部视频 | 国产免费无码一区二区视频 | 日本一区二区三区免费高清 | 性开放的女人aaa片 | www国产精品内射老师 | 偷窥日本少妇撒尿chinese | 色妞www精品免费视频 | 午夜性刺激在线视频免费 | 全球成人中文在线 | 乌克兰少妇xxxx做受 | 黑人巨大精品欧美黑寡妇 | 内射老妇bbwx0c0ck | 黑人巨大精品欧美一区二区 | 中文久久乱码一区二区 | 无码人妻丰满熟妇区毛片18 | 精品国偷自产在线视频 | 一本大道伊人av久久综合 | 高潮毛片无遮挡高清免费视频 | 永久黄网站色视频免费直播 | 国产后入清纯学生妹 | 999久久久国产精品消防器材 | 欧美自拍另类欧美综合图片区 | 国模大胆一区二区三区 | 一个人免费观看的www视频 | 玩弄人妻少妇500系列视频 | 国产成人一区二区三区别 | 啦啦啦www在线观看免费视频 | 久久婷婷五月综合色国产香蕉 | 亚洲中文字幕在线无码一区二区 | 久久精品国产99精品亚洲 | 老司机亚洲精品影院 | 国产免费久久久久久无码 | 中国大陆精品视频xxxx | 无套内射视频囯产 | 成人亚洲精品久久久久 | 精品人妻中文字幕有码在线 | 中文精品无码中文字幕无码专区 | 亚洲一区二区三区在线观看网站 | 蜜桃无码一区二区三区 | 特黄特色大片免费播放器图片 | 色综合视频一区二区三区 | 国产精品亚洲一区二区三区喷水 | 未满成年国产在线观看 | 国产黑色丝袜在线播放 | 亚洲第一网站男人都懂 | 亚洲国产av美女网站 | 俄罗斯老熟妇色xxxx | 中文字幕无码人妻少妇免费 | 国产在线一区二区三区四区五区 | 亚洲综合无码一区二区三区 | 亚洲国产精品久久久久久 | 伊人久久婷婷五月综合97色 | 亚洲精品一区二区三区大桥未久 | 天天综合网天天综合色 | 国产成人午夜福利在线播放 | 丰满少妇女裸体bbw | 在线成人www免费观看视频 | 亚洲 激情 小说 另类 欧美 | 一区二区三区高清视频一 | 免费无码的av片在线观看 | 丰满少妇人妻久久久久久 | 装睡被陌生人摸出水好爽 | 国产亚av手机在线观看 | 日欧一片内射va在线影院 | 色一情一乱一伦一区二区三欧美 | 日本成熟视频免费视频 | 免费人成在线观看网站 | 国产免费无码一区二区视频 | 免费人成网站视频在线观看 | 55夜色66夜色国产精品视频 | 国产一精品一av一免费 | 久久久无码中文字幕久... | 亚洲精品无码国产 | 啦啦啦www在线观看免费视频 | 精品日本一区二区三区在线观看 | 精品无码国产一区二区三区av | 精品国产国产综合精品 | 精品夜夜澡人妻无码av蜜桃 | 国产欧美熟妇另类久久久 | 精品偷自拍另类在线观看 | 色综合久久久无码中文字幕 | 欧美日韩在线亚洲综合国产人 | 水蜜桃色314在线观看 | 中文无码伦av中文字幕 | 亚洲精品国偷拍自产在线麻豆 | 99久久精品日本一区二区免费 | 国产精品久久精品三级 | 小sao货水好多真紧h无码视频 | 久久无码人妻影院 | 在线观看国产一区二区三区 | 3d动漫精品啪啪一区二区中 | 久久亚洲日韩精品一区二区三区 | 97无码免费人妻超级碰碰夜夜 | 对白脏话肉麻粗话av | 内射后入在线观看一区 | 国产猛烈高潮尖叫视频免费 | 亚洲国产综合无码一区 | 黑人巨大精品欧美黑寡妇 | 色诱久久久久综合网ywww | 国产精品香蕉在线观看 | 又大又硬又黄的免费视频 | 99久久久国产精品无码免费 | 男女超爽视频免费播放 | 亚洲中文字幕va福利 | 亚洲日韩中文字幕在线播放 | 窝窝午夜理论片影院 | 亚洲综合无码久久精品综合 | 成人精品视频一区二区三区尤物 | 青青青爽视频在线观看 | 在线精品亚洲一区二区 | 99久久亚洲精品无码毛片 | 午夜精品一区二区三区在线观看 | 波多野42部无码喷潮在线 | 3d动漫精品啪啪一区二区中 | 99久久精品午夜一区二区 | 波多野结衣一区二区三区av免费 | 扒开双腿吃奶呻吟做受视频 | 亚洲精品一区二区三区婷婷月 | 熟女少妇人妻中文字幕 | 福利一区二区三区视频在线观看 | 激情五月综合色婷婷一区二区 | 玩弄中年熟妇正在播放 | 亚洲欧美精品伊人久久 | 99久久亚洲精品无码毛片 | 香港三级日本三级妇三级 | 十八禁视频网站在线观看 | 国产精品99久久精品爆乳 | 欧美熟妇另类久久久久久不卡 | 亚洲一区二区三区国产精华液 | 亚洲精品国产品国语在线观看 | 人妻体内射精一区二区三四 | 亚洲精品国偷拍自产在线麻豆 | 内射后入在线观看一区 | 香港三级日本三级妇三级 | 久久精品女人天堂av免费观看 | 日本爽爽爽爽爽爽在线观看免 | 中文字幕日产无线码一区 | а√资源新版在线天堂 | 大地资源网第二页免费观看 | 午夜精品久久久久久久久 | 少妇性俱乐部纵欲狂欢电影 | 午夜嘿嘿嘿影院 | 国产激情精品一区二区三区 | 少女韩国电视剧在线观看完整 | 精品 日韩 国产 欧美 视频 | 亚洲欧洲日本综合aⅴ在线 | 中文字幕人妻丝袜二区 | 成人试看120秒体验区 | 久久久久久亚洲精品a片成人 | 亚洲欧美日韩综合久久久 | 粗大的内捧猛烈进出视频 | 98国产精品综合一区二区三区 | 啦啦啦www在线观看免费视频 | 国产另类ts人妖一区二区 | 久久综合网欧美色妞网 | 97色伦图片97综合影院 | 一二三四在线观看免费视频 | 日韩精品无码一区二区中文字幕 | 一本久道高清无码视频 | 精品国偷自产在线视频 | 国产成人无码一二三区视频 | 伊人久久婷婷五月综合97色 | 天天av天天av天天透 | 久久久精品成人免费观看 | 亚洲人亚洲人成电影网站色 | 樱花草在线播放免费中文 | 内射后入在线观看一区 | 久久99热只有频精品8 |