3atv精品不卡视频,97人人超碰国产精品最新,中文字幕av一区二区三区人妻少妇,久久久精品波多野结衣,日韩一区二区三区精品

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

预告:无穷小微积分改版,寻找接班人

發布時間:2023/12/14 编程问答 28 豆豆
生活随笔 收集整理的這篇文章主要介紹了 预告:无穷小微积分改版,寻找接班人 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

??? 敬告廣大讀者,新年將至。無窮小微積分網站將要改版,尋找接班人。
??? 特此公告。
袁萌? 陳啟清? 12月30日
附件:超實微積分原文
Hyperreal Calculus MAT2000 –– Project in Mathematics
Arne Tobias Malkenes ?degaard Supervisor: Nikolai Bj?rnest?l Hansen
Abstract This project deals with doing calculus not by using epsilons and deltas, but by using a number system called the hyperreal numbers. The hyperreal numbers is an extension of the normal real numbers with both in?nitely small and in?nitely large numbers added. We will ?rst show how this systemcanbecreated,and thenshowsomebasicpropertiesofthehyperreal numbers. Then we will show how one can treat the topics of convergence, continuity, limits and di?erentiation in this system and we will show that the two approaches give rise to the same de?nitions and results.
Contents
1 Construction of the hyperreal numbers 3
1.1 Intuitive construction . 3
1.2 Ultra?lters . . . . . . . . . . . 3
1.3 Formal construction . . . . . . . . . . . . . . . . 4
1.4 In?nitely small and large numbers . . . . . . . 5
1.5 Enlarging sets . . . . . . . . . . 5
1.6 Extending functions . . .. . . . . 6
2 The transfer principle 6
2.1 Stating the transfer principle . . . . . . . 6
2.2 Using the transfer principle . . . . .? . . . . . 7
3 Properties of the hyperreals 8
3.1 Terminology and notation . .. . 8
3.2 Arithmetic of hyperreals . .? . . 9
3.3 Halos . . . . . . . . . . . . . . . . . 9
3.4 Shadows . . . .? .? . . . . . . . . . 10
4 Convergence 11
4.1 Convergence in hyperreal calculus. . . . .. . . . 11
4.2 Monotone convergence . . . 12
5 Continuity 13
5.1 Continuity in hyperreal calculus . . . . . . . . . . . . 13
5.2 Examples . . . . . .? . . . . 14
5.3 Theorems about continuity.? 15
5.4 Uniform continuity . . ... 16
6 Limits and derivatives 17
6.1 Limits in hyperreal calculus . .17
6.2 Di?erentiation in hyperreal calculus . . . . . . .. . 18
6.3 Examples . . . . . . . . . . 18
6.4 Increments . . . . .? . . . 19
6.5 Theorems about derivatives . 19
1 Construction of the hyperreal numbers
1.1 Intuitive construction We want to construct the hyperreal numbers as sequences of real numbers hrni = hr1,r2,...i, and the idea is to let sequences where limn→∞ rn = 0 represent in?nitely small numbers, or in?nitesimals, and let sequences where limn→∞rn =∞ represent in?nitely large numbers. However, if we simply let each hyperreal number be de?ned as a sequence of real numbers, and let addition and multiplication be de?ned as elementwise addition and multiplication of sequences, wehavetheproblemthatthisstructure is not a ?eld, since h1,0,1,0,...i
h0,1,0,1,...i=h0,0,0,0,...i. The way we solve this is by introducing an equivalence relation on the set of real-valued sequences. We want to identify two sequences if the set of indices for which the sequences agree is a large subset of N, for a certain technical meaning of large. Let us ?rst discuss some properties we should expect this concept of largeness to have. ? N itself must be large, since a sequence must be equivalent with itself. ? If a set contains a large set, it should be large itself. ? The empty set ? should not be large. ? We want our relation to be transitive, so if the sequences r and s agree on a large set, and s and t agree on a large set, we want r and t to agree on a large set.
1.2 Ultra?lters Our model of a large set is a mathematical structure called an ultra?lter. De?nition 1.1 (Ultra?lters). We de?ne an ultra?lter on N, F, to be a set of subsets of N such that: ? If X ∈ F and X ? Y ? N, then Y ∈ F. That is, F is closed under supersets. ? If X ∈F and Y ∈F, then X ∩Y ∈F. F is closed under intersections. ? N∈F, but ?6∈F. ? For any subset A of N, F contains exactly one of A and N\A. We say that an ultra?lter is free if it contains no ?nite subsets of N. Note that a free ultra?lter will contain all co?nite subsets of N (sets with ?nite complement) due to the last property of an ultra?lter. Theorem 1.2. There exists a free ultra?lter on N. Proof. See [Kei76, p. 49]. ?
2
1.3 Formal construction Let F be a ?xed free ultra?lter on N. We de?ne a relation ≡ on the set of real-valued sequences RN by letting hrni≡hsni ?? {n ∈N| rn = sn}∈F. Proposition 1.3 (Equivalence). The relation ≡ is an equivalence relation on RN. Proof. We check all needed properties of an equivalence relation. Re?exivity Since the set {n ∈N| rn = rn}= N, and N∈F, ≡ is re?exive. Symmetry The sets {n ∈N| rn = sn} and {n ∈N| sn = rn} are the same, so if one belongs to F, so does the other. Transitivity Assume that hrni≡hsni and hsni≡htni. Then both {n ∈ N | rn = sn}∈F and {n ∈N| sn = tn}∈F. Since {n ∈N| rn = sn}∩{n ∈ N| sn = tn}?{n ∈N| rn = tn}, and F is closed under intersections and supersets, {n ∈N| rn = tn}∈F, and so hrni≡htni, as desired.?? Since ≡ is an equivalence relation, we can de?ne the set of hyperreal numbers ?R as the set of real-valued sequences modulo the equivalence relation ≡. In symbols, ?R ={[r]| r ∈RN}= RN/ ≡ . We de?ne addition and multiplication of elements in ?R by doing elementwise addition and multiplication in the related sequences, more formally as [r]+[s]=[hrni]+[hsni]=[hrn +sni] [r]?[s]=[hrni]?[hsni]=[hrn ?sni]. We de?ne the ordering relation < by letting [r] < [s] ?? {n ∈N| rn < sn}∈F. At this point, let us introduce some notation to make our arguments easier to read. For two sequences hrni and hsni, we denote the agreement set {n ∈N| rn = sn} byJr = sK. We can apply the same notation to other relations, so for example we haveJr < sK={n ∈N| rn < sn}. Proposition 1.4. The operations + and?are well-de?ned, and so is the relation <. Proof. We ?rst show that + is well-de?ned. If we have that hrni ≡ hr0 ni and hsni ≡ hs0ni, thenJr = r0K∈ F andJs = s0K∈ F, which means thatJr = r0K∩Js = s0K∈F. What we now need to show is thatJr + s = r0 + s0K∈F. If, for some k ∈ N, both rk = r0 k and sk = s0 k, then rk + sk = r0 k + s0 k, hence if k ∈Jr = r0K∩Js = s0K, then k ∈Jr + s = r0 + s0K, which shows that Jr = r0K∩Js = s0K?Jr + s = r0 + s0K. SinceJr = r0K∩Js = s0K∈ F, so is Jr +s = r0 +s0K. So if r ≡ r0 and s ≡ s0, r +s ≡ r0 +s0, which shows that the operation is well-de?ned. Showing that ? is well-de?ned is similar. 3
We will now show that < is well-de?ned, which means that we need to show that if hrni ≡ hr0 ni and hsni ≡ hs0ni, then ifJr < sK∈ F, thenJr0 < s0K∈ F.Firstly, assume that Jr = r0K∈F and thatJs = s0K∈F. Then, we need to provethat if Jr < sK∈F thenJr0 < s0K∈F. So let us assume thatJr < sK∈F, and then prove thatJr0 < s0K∈F. By our assumptions, we have thatJr = r0K∩Js = s0K∩Jr < sK∈ F. Ifk ∈Jr = r0K∩Js = s0K∩Jr < sK, then rk = r0 k, sk = s0 k and rk < sk, and therefore r0 k < s0 k, so k ∈Jr0 < s0K. So,Jr = r0K∩Js = s0K∩Jr < sK?Jr0 < s0K,and since F is closed under supersets, we conclude thatJr0 < s0K∈F, whichshows that < is well-de?ned.?? 1.4 In?nitely small and large numbers One of the main reasons for constructing the hyperreals is that we want to have access to in?nitely large and in?nitely small numbers, and now we can prove their existence. Theorem 1.5. There exists a number ε ∈ ?R such that 0 < ε < r for any positive real number r, and there exists a number ω ∈ ?R such that ω > r for any real number r. Proof. First, we need to talk about real numbers in ?R. The way to do this is that given a real number r ∈R, we can identify this with a hyperreal number ?r ∈ ?R as ?r =hr,r,...i. We will generally omit the ?-decoration, and simply refer to this number as r. Now, let us turn to the actual proof. Let ε =h1, 1 2,...i =h1 ni . For anypositive real number r, the set {n ∈ N | 1 n > r} must be ?nite, and therefore {n ∈N| 1 n < r}isco?nite,andhencebelongstoourfreeultra?lterF. Therefore, we can conclude that ε < r. Also, since {n ∈N|0 < 1 n}= N∈F, it must bethe case that 0 < ε. So the number ε is a hyperreal number which is greater than 0, but smaller than any positive real number. Let ω =[h1,2,...i]=[hni]. For any real number r, the set{n ∈N| r ≥ n}is ?nite, and hence{n ∈N| r < n}is co?nite, and belongs toF, which means that ω > r. This proves that ω is a hyperreal number greater than any real number. ?
1.5 Enlarging sets For a given subset A of R we can de?ne an “enlarged” subset ?A of ?R by saying that a hyperreal number r is an element in ?A if and only if the set of n such that rn is an element in A is large. Formally this can be de?ned as [r]∈?A ?? {n ∈N| rn ∈ A}∈F. Again, we need to check that this is well-de?ned. Using theJ...Knotation,let Jr ∈ AK={n ∈N| rn ∈ A}. We have that Jr = r0K∩Jr ∈ AK?Jr0 ∈ AK,so if r ≡ r0 andJr ∈ AK∈F, thenJr0 ∈ AK∈F, which shows that enlargements are well-de?ned.
4
An example of this is if A = N and ω =h1,2,3,...i. ThenJω ∈NK= N∈F,so ω ∈?N. Wewillrefertotheset ?N asthehypernaturals. Similarly, if A =(0,1)and r =h0.9,0.99,0.999,...i. ThenJr ∈NK= N∈F, so r ∈?(0,1). 1.6 Extending functions An important tool in non-standard analysis is to take a function f: R → R and extend it to a function ?f: ?R→?R. This is done by applying the function to each element in the sequence representing the given hyperreal number. We de?ne the extension as follows: ?f([hr1,r2,...i])=[hf(r1),f(r2),...i]. Again, we need to prove that this is well-de?ned. First, let f ?r denote hf(r1),f(r2),...i. In general,Jr = r0K?Jf ?r = f ?r0K, and so if r ≡ r0, then ?f(r)= f ?r ≡ f ?r0 = ?f(r0). Hence the function is well-de?ned. A function f: A →R de?ned on some subset A of R can also be extended to a function ?f: ?A →?R, but not in exactly the same way as above. Since r can be in ?A without all elements of r being in A, there can be indices i for which f(ri) is not de?ned. In order to get around this, we let f(ri) = 0 whenever ri 6∈ A. More formally, let sn =(f(rn) if rn ∈ A 0 otherwise and de?ne ?f([hrni])=[hsni]. Since we have that ?f(r)= f(r) whenever r ∈ A, ?f extends f. Therefore we will often simply drop the ?-decoration, and simply refer to the extended function as f as well. An important subject related to this construction is sequences. A sequence hs1,s2,...i is simply a function s: N→R, and so by this construction can be extendedtoahypersequence s: ?N→?R,whichmeansthattheterm sn isde?ned even when n ∈?N\N. 2 The transfer principle 2.1 Stating the transfer principle Oneofthemostimportanttoolsofnon-standardanalysisisthetransferprinciple, a way to show that a certain type of statement is true when talking about the real numbers if and only if a certain related statement is true when talking about the hyperreal numbers. 1 First, we introduce the set of sentences which the transfer principle applies to. This set is basically the set of all sentences (formulas with no free variables) in a language of ?rst-order logic which consists of a constant for each real number, a function symbol for each real function, and a relation symbol for each 1This is a rather cursory introduction to the tranfer principle. For a more in-depth explanation, see [Gol98, pp. 35-47].
5
relationonthereals. However, insteadofusingthequanti?ers(?x)and(?y), our sentences use quanti?ers of the form (?x ∈ A) and (?y ∈ B) where A and B are subsets of R. Some examples of such sentences are (?n ∈N)(?m ∈N)(m > n), (?x ∈R)(?y ∈R)(x+y = y) which state respectively that there is no biggest natural number and there is an additive identity for the reals. Let us call such a sentence an L-sentence. Now, we de?ne the ?-transform of an L-sentence. We take a sentence ?, and create a related sentence ??. An L-sentence ? contains symbols P, f, and r for relations, functions, and constants on R. To create ??, we replace P by ?P for all relations P, replace f by ?f for all functions f, and replace r by ?r for all constants r. Some examples of this are: ? The ?-transform of the sentence (?n ∈ N)(?m ∈ N)(m > n) is (?n ∈ ?N)(?m ∈?N)(m ?> n). ? The ?-transform of (?x ∈R)(sin(x) < 2) is (?x ∈?R)(?sin(x)?< ?2). Wewillgenerallyfollowtheconventionsthatweomitthe?forconstants,most functions, and simple equalities and inequalities. With these conventions, the above sentences become (?n ∈?N)(?m ∈?N)(m > n) and (?x ∈?R)(sin(x) < 2). Now we state the transfer principle, which we will take as true without proof. Theorem 2.1 (Transfer principle). An L-sentence ? is true if and only if its ?-transform ?? is true. Some remarks are in order. It is worth pointing out that one can go in both directions, that is one can go from R to ?R, and from ?R to R. If one decides to go in this last direction, it is important that the statement is the ?-transform of an L-sentence, so for example it can contain no hyperreal constants. A way to get around this is by replacing the constant with a variable x, and adding the quanti?er (?x ∈?A) for some A ?R in front, which is a technique we will use. In many cases, we will not explicitly write down the full sentence, but rather state things like “since s < n for all natural n, by transfer it also also true for any hypernatural n”.
2.2 Using the transfer principle Theorem 2.2. The structureh?R,+,?,<iis an ordered ?eld with zero and unity. Proof. The way we prove this is by using the transfer principle. We take the fact that R is an ordered ?eld as true. This can be stated by a number of logical sentences. The fact that addition is commutative in R can be expressed as the sentence (?x,y ∈ R)(x+y = y +x), and so by the transfer principle, we can conclude that (?x,y ∈ ?R)(x+y = y +x), and so addition is commutative in ?R. We leave out the full details, but this procedure can then be done for all the axioms for ordered ?elds (since they are all ?rst-order axioms), and so we conclude that h?R,+,?,<i is also an ordered ?eld.?? Remark. One important property of the standard real numbers is that they are complete, that is any subset of R which is non-empty and bounded above has a least upper bound. The reason for why this cannot be proven to hold for ?R is that this can only be expressed using second-order logic, since you need to
6
talk about subsets of R, not just elements of R. In fact, ?R is not complete. An example of this is that the open interval of real numbers (0,1) does not have a least upper bound in ?R. Proposition 2.3. For any two subsets A and B of R, we have that ? ?(A∪B)= ?A∪?B ? ?(A∩B)= ?A∩?B ? ?(A\B)= ?A\?B. Proof. We prove the statement about unions, but the other two statements can be proven similarly. The statement (?x ∈ R)(x ∈ (A∪B) ? x ∈ A∨x ∈ B) is true for any two subsets A and B of R, basically by the de?nition of unions. Using the transfer principle, the statement (?x ∈ ?R)(x ∈ ?(A ∪ B) ? x ∈ ?A∨x ∈?B) is also true. We also have that for any two subsets X and Y of ?R, (?x ∈?R)(x ∈(X∪Y)? x ∈ X∨x ∈ Y). Combining these last two statements, letting X = ?A and Y = ?B,wegetthat(?x ∈?R)(x ∈?(A∪B)? x ∈(?A∪?B)), which shows that ?(A∪B)= ?A∪?B.?? Remark. It is worth noting that ?Sn∈N Andoes not need to be equal to Sn∈N?An. If An ={n}, then ?Sn∈N An= ?N, butSn∈N?An= N. 3 Properties of the hyperreals 3.1 Terminology and notation At this point we introduce some terminology and notation for talking about hyperreal numbers. We say that a hyperreal number b is: ? limited if r < b < s for some r,s ∈R, ? positive unlimited if r < b for all r ∈R, ? negative unlimited if b < r for all r ∈R, ? unlimited if it is positive or negative unlimited, ? positive in?nitesimal if 0 < b < r for all positive r ∈R, ? negative in?nitesimal if r < b < 0 for all negative r ∈R, ? in?nitesimal if it is positive in?nitesimal, negative in?nitesimal or 0, ? appreciable if it is limited but not in?nitesimal. We will use the terms limited and unlimited, rather than ?nite and in?nite, when referring to individual numbers. Finite and in?nite are terms we use for sets only. For any subset X of ?R, we de?ne X∞ = {x ∈ X | x is unlimited}, X+ = {x ∈ X | x > 0}, and X? = {x ∈ X | x < 0}. These notations can also be combined, and so X+ ∞ denotes all positive unlimited members of X.
7
3.2 Arithmetic of hyperreals When reasoning about hyperreals, it is useful to have certain rules for computing them, for example that the sum of two in?nitesimals is itself in?nitesimal. Here are some such rules for computing with hyperreal numbers. If ε and δ are in?nitesimals, b and c are appreciable, and H and K are unlimited, then: ? ε+δ is in?nitesimal, ? b+ε is appreciable, ? H +ε and H +b are unlimited, ? b+c is limited, ? ?ε is in?nitesimal, ? ?b is appreciable, ? ?H is unlimited, ? ε?δ and ε?b are in?nitesimal, ? b?c is appreciable, ? b?H and H ?K are unlimited, ? 1 ε is unlimited if ε 6=0, ? 1 b is appreciable, ? 1 H is in?nitesimal, ? ε b, ε H and b H are in?nitesimal, ? b c is appreciable, ? b ε, H ε and H b are unlimited if ε 6=0. We do not give a proof for any of these rules, but they can be proven by using the transfer principle, or by reasoning about sequences of reals. The following expressions do not have such a rule, and can all take on in?nitesimal, appreciable, and unlimited values: ε δ, H K, ε?H, H +K. 3.3 Halos A hyperreal b is said to be in?nitely close to a hyperreal c if b?c is in?nitesimal, and this is denoted by b ' c. This de?nes an equivalence relation on ?R, and we de?ne the halo of b to be the '-equivalence class hal(b)={c ∈?R| b ' c}. Said di?erently, the halo of b is the set of all hyperreals which are in?nitely close to b. Proposition 3.1. If two real numbers b and c are in?nitely close, that is if b ' c, then b = c. Proof. Suppose that b ' c with b and c real, but that b 6= c. Then there is a non-zero real number r such that b?c = r. But this contradicts the assumption that b ' c, since r is not an in?nitesimal. ?
8
Proposition 3.2. Suppose that b and c are limited, and that b ' b0 and c ' c0. Then b±c ' b0±c0 and b?c ' b0?c0. Furthermore, if c 6'0, then b/c ' b0/c0. Proof. From our assumptions, we have that b?b0 = εb and c?c0 = εc, with εb and εc being in?nitesimal. It is also the case that both b0 and c0 are limited. We want to show that b ± c ' b0 ± c0, and this is done by showing that( b±c)?(b0±c0) is in?nitesimal. We have that (b±c)?(b0±c0)=(b?b0)±(c?c0)= εb ±εc. Since both the sum of and the di?erence between two in?nitesimals is itself in?nitesimal by Section 3.2, we have that (b±c)?(b0±c0) is in?nitesimal, and hence that b±c ' b0±c0. The case b?c ' b0?c0 is proven similarly. We have that b?c?b0?c0 = b?c?b?c0 +b?c0?b0?c0 = b?(c?c0)+(b?b0)?c0 = b?εc +εb ?c0 whichisin?nitesimalsincetheproductofalimitednumberwithanin?nitesimalis in?nitesimal and the sum of two in?nitesimals is in?nitesimal. Hence b?c ' b0?c0. For the last case we have that
b c ?
b0 c0
= b?c0?b0?c c?c0 = b?c0?b?c+b?c?b0?c c?c0 = b?(c?c0)+c?(b?b0) c?c0 = c?εb ?b?εc c?c0 . Now, if c 6'0, the denominator is the product of two appreciable numbers, which is also appreciable. Since the numerator is in?nitesimal by a similar argument to thecaseof products, the quotientis itself in?ntesimal, andhence b/c ' b0/c0.?? Remark. The ?rst part of the prosition, namely that b±c ' b0±c0, holds also for unlimited b and c, but the other parts do not. To show this, let H be some positive unlimited number, and let b0, c and c0 equal H, and let b equal H + 1 H. Then b ' b0 and c ' c0, but b?c?b0?c0 =H + 1 H?H ?H ?H = H2 +1?H2 =1, which is not in?nitesimal, and so b?c 6' b0?c0. A similar counterexample can also be produced for b/c.
3.4 Shadows Theorem 3.3 (Existence of shadows). Every limited hyperreal b is in?nitely close to one and only one real number s. This real number is called the shadow of b, which is denoted by sh(b).
9
Proof. Let A ={r ∈R| r < b}. Since A is a non-empty set which is bounded above, it has a least upper bound of A in R by the (Dedekind) completeness of R. Call this real number s. We want to show that b ' s, and we do this by showing that |b?s| < εfor all ε ∈ R+. Take any such ε. We show that |b?s| < ε by showing thats ?ε < b < s+ε. Take the case when b < s+ε. Assume that s+ε ≤ b. Then s < s+ ε 2 < s+ε ≤ b. Sinceboth s and ε arereal, sois s+ ε 2, andsince s+ ε 2 < b, s + ε 2 ∈ A. But since s + ε 2 > s, s is not an upper bound of A. But this is a condradiction, so it must be the case that b < s+ε. Now take the case when s?ε < b. Assume that b ≤ s?ε. Then b ≤ s?ε < s? ε 2 < s. Since s? ε 2 ≥ b,s ? ε 2 is an upper bound of A, but s? ε 2 < s, so s is not the least upper bound of A, which is a contradiction. We also need to check that there cannot be more than one shadow of b. Assume that there are two reals s and s0 which are both in?nitely close to b. Thus, by de?nition, b ' s and b ' s0, and so by transitivity of ', s ' s0. But since both s and s0 are real, by Proposition 3.1 we conclude that s = s0.2?? Alternative proof. Watch Babylon 5. ?
4 Convergence 4.1 Convergence in hyperreal calculus The standard way to de?ne convergence in real analysis is that a sequence hsni converges to the limit L ∈ R if for any ε ∈ R+, there exists an mε ∈ N such that |sn ?L| < ε for any n > mε. This can be expressed in formal logic by the sentence (?ε ∈R+)(?mε ∈N)(?n ∈N)(n > mε →|sn ?L| < ε). The idea that this de?nition formalizes is that a sequence convergences to a real value L if you get very close to L when you get very far out in the sequence. What we do for non-standard analysis is that we say that a sequence converges to L if it gets in?nitely close to L as one gets in?nitely far out in the sequence. The original sequence hsni is only de?ned on the naturals, so one can not go in?nitely far out, but by using how we de?ned hypersequences in Section 1.6, we get a new sequence which is de?ned for all n ∈?N, where we can go in?nitely far out, and we denote this sequence by hsni as well. Theorem 4.1. A sequence of real numbers hsni converges to L if and only if sn ' L for all unlimited n. Proof. Assume that the sequence hsni converges to L. We need to show that sn ' L for any unlimited n, and we do this by proving that |sn ?L| < ε for any positive real ε. So take an ε ∈R+. By the de?nition of convergence, there exists a natural number mε such that |sn ?L| < ε whenever n > mε. Let k be such a natural number. Then the formal statement (?n ∈N)(n > k →|sn ?L| < ε) must hold. By the transfer principle, it must also be the case that (?n ∈?N)(n > k →|sn ?L| < ε) (1) 2This proof, along with several other proofs we give in this article, is a modi?ed version of a proof given in [Gol98].
10
is true. Now, let N be any unlimited number. Since k is limited, we have that N > k, and so by (1) can conclude that |sN ?L| < ε. Since this holds for any positive ε, it must be the case that sN ' L is true, which completes the forward direction of the proof. For the converse, assume that sn ' L for all unlimited n. We want to show that the sequence converges. Take any ε ∈ R+, and ?x an unlimited N ∈?N. Now, if n > N, n must be unlimited, and so sn ' L by our assumption, from which we conclude that |sn ? L| < ε. Formally, this is expressible as (?n ∈?N)(n > N →|sn ?L| < ε). Thus, the sentence (?mε ∈?N)(?n ∈?N)(n > mε →|sn ?L| < ε) must also be true. By transfer, we can conclude that (?mε ∈N)(?n ∈N)(n > mε →|sn ?L| < ε) must hold. Since ε was taken to be any positive real, we have that the sentence (?ε ∈R+)(?mε ∈N)(?n ∈N)(n > mε →|sn ?L| < ε) must hold. This is indeed the formal statement for stating that the sequence sn converges, which ?nishes our proof. ?
4.2 Monotone convergence A standard theoremaboutconvergence fromcalculusis thetheorem ofmonotone convergence, which can be stated as Theorem 4.2. Let hs1,s2,...i be a sequence of real numbers which is bounded above and non-decreasing. Then hsni is convergent. The standard proof works by taking the supremum of the set {sn | n ∈N}, and showing that the sequence converges to this number. The non-standard proof also uses the supremum of that set, but in a very di?erent way. Proof. Let sN be an extended term of the sequence, and let b be an upper bound of the sequence. Since the sequence is non-decreasing, s1 ≤ sn for any n, and sn ≤ b must also hold for any n since the sequence was bounded above by b. Thus the statement (?n ∈N)(s1 ≤ n∧n ≤ b) must be true, and so must its ?-transform (?n ∈?N)(s1 ≤ n∧n ≤ b). Applying this to our extended term sN, it is clear that sN is limited and so has a shadow L = sh(sN). What we now want to prove is that L is the least upper bound for the set {sn | n ∈N}. Since a set can only have one least upper bound, this L must be the same for all extended terms, and so all extended terms have the same shadow. Then, for any extended term sN, sN ' L, and then by Theorem 4.1, the sequence must be convergent. If m ≤ n, sm ≤ sn since the sequence is non-decreasing. By transfer, this holds for any m,n ∈?N as well. In particular, if m ∈N, and N is the index for 11
our chosen extended term sN, then sm ≤ sN ' L, and hence sm ≤ L since both sm and L are real. Hence, L ≥ si for any i ∈N, and so L is an upper bound of our set. Now we show that L is the least upper bound. Let r be any upper bound of our set. Then (?n ∈N)(sn ≤ r), and so by using transfer, we must have that sN ≤ r. Then we have that L ' sN ≤ r, and then that L ≤ r, since both L and r are real. So for any upper bound of our set, L is not larger, and so L is the least upper bound, completing our proof. ?
5 Continuity 5.1 Continuity in hyperreal calculus The standard de?nition of continuity states that a function f is continuous at c if for any positive real ε, there exists a positive real δ such that|f(x)?f(c)| < ε whenever |x?c| < δ, which can be expressed by the formal statement (?ε ∈ R+)(?δ ∈R+)(?x ∈R)(|x?c| < δ →|f(x)?f(c)| < ε). The intuitive notion in this de?nition is that f(x) gets arbitrarily close to f(c) when x gets arbitrarily close to c. What our non-standard de?nition formalizes, is that f(x) is in?nitely close to f(c) when x is in?nitely close to c. Theorem 5.1. A function f: R → R is continuous at c ∈ R if and only if f(x)' f(c) whenever x ' c. Proof. We start by assuming that f is continuous at c, and also that we have a hyperreal x such that x ' c. From this, we want to show that f(x)' f(c), and we do this by showing that |f(x)?f(c)| < ε for all ε ∈R+. Take any positive real ε. By the de?nition of continuity, there exists a δ such that for all real x, |f(x)?f(c)| < ε whenever |x?c| < δ. Fix such a δ. Then, the statement (?x ∈R)(|x?c| < δ →|f(x)?f(c)| < ε) must hold, and so by transfer its ?-transform (?x ∈?R)(|x?c| < δ →|f(x)?f(c)| < ε) mustalsohold. Forthe x weassumedwasin?nitesimallycloseto c,thestatement |x?c| < δ →|f(x)?f(c)| < ε is true. But since δ is a positive real and x ' c, it must be true that |x?c| < δ, and so we can conclude that |f(x)?f(c)| < ε. Since this holds for any ε ∈R+, it must be true that f(x)' f(c), which is what we needed to show. For the converse, assume that f(x) ' f(c) whenever x ' c. We want to prove that the formal statement of continuity must be true. First, let ε be any positive real, and let d be any positive in?nitesimal. Then, it must be the case that x ' c whenever|x?c| < d. Then, byassumption, wehavethat f(x)' f(c), and thus that |f(x)?f(c)| < ε for any ε ∈R+. From this we can conclude that if |x?c| < d, then |f(x)?f(c)| < ε. This can be expressed formally as (?x ∈?R)(|x?c| < d →|f(x)?f(c)| < ε). Since this is true, the statement (?δ ∈?R+)(?x ∈?R)(|x?c| < δ →|f(x)?f(c)| < ε) 12
must also be true. But this is the ?-transform of the sentence (?δ ∈R+)(?x ∈R)(|x?c| < δ →|f(x)?f(c)| < ε), and so by transfer we can conclude that this last sentence is also true. Since ε was chosen arbitrarily, with no conditions other than it being positive and real, we can conclude that the formal statement of continuity, (?ε ∈R+)(?δ ∈R+)(?x ∈R)(|x?c| < δ →|f(x)?f(c)| < ε) must be true, which concludes our proof.?? This theorem only deals with functions which are de?ned on all of R. In many circumstances it is useful to study functions which are de?ned only on some subset A of R. The proof of Theorem 5.1 can be easily extended to showing the following theorem. Theorem 5.2. The function f: A → R is continuous at c ∈ A if and only if f(x)' f(c) for all x ∈?A with x ' c. Note that we here do not require that f(x)' f(c) for all x,c ∈?A. This turns out to be a stronger condition, and is in fact equivalent with the notion of uniform continuity, which we will discuss later in this section.
5.2 Examples Here we give some examples of using hyperreal calculus to show that some functions are continuous or discontinuous. Proposition 5.3. The function f(x)= x2 is continuous at any a ∈R. Proof. By Theorem 5.1, it su?ces to show that f(x)' f(a) whenever x ' a. If x ' a,thenx = a+εforsomein?nitesimalε. Nowf(x)= f(a+ε)= a2+2aε+ε2. Then f(x)?f(a)= a2 +2aε+ε2?a2 = ε(2a+ε), which is in?nitesimal since the product of a limited number with an in?nitesimal is in?nitesimal. Hence, whenever x ' a, f(x)' f(a), so f is a continuous function.?? Proposition 5.4. The function f de?ned by f(x)=(1 if x is rational 0 if x is irrational is discontinuous at all a ∈R. Proving this with hyperreal calculus is rather straightforward, but requires establishing some propositions ?rst. Proposition 5.5. The extended function ?f can be de?ned as ?f(x)=(1 if x ∈?Q 0 if x 6∈?Q. (2)
13
Proof. By transfer of the true sentences (?x ∈R)(x ∈Q→ f(x)=1) (?x ∈R)(x 6∈Q→ f(x)=0) we can conclude that ?f(x) = 1 if x ∈ ?Q, and that ?f(x) = 0 if x 6∈ ?Q, which shows that the de?nition (2) is a correct de?nition of ?f.?? Proposition 5.6. Any halo contains both hyperrationals (members of ?Q) and hyperirrationals (members of ?R\?Q) Proof. Since any halo contains some hyperreal number r and the hyperreal number r+ε, where ε issomepositivein?nitesimal,italsocontainsallhyperreals between these, the set X ={x ∈?R| r < x < r +ε}. Now, since the sentence (?x,y ∈ R)(?z ∈ Q)(x < y → x < z ∧z < y) is true, using transfer, and applying the statement to r and r +ε, the statement (?z ∈?Q)(r < z∧z < r +ε) is true, and so X ∩?Q6=?, which means that our given halo contains at least one hyperrational number. For the other case, since the sentence (?x,y ∈ R)(?z ∈ (R\Q))(x < y →x < z ∧z < y) is true, using transfer and applying the statement to r and r +ε, the statement (?z ∈ ?(R\Q))(r < z ∧z < r + ε) is true, which means that X ∩?(R\Q)6=?, so our halo contains at least one hyperreal which is a member of ?(R\Q). But by Proposition 2.3, ?(R\Q)= ?R\?Q, so our halo contains at least one member of ?R\?Q, or a hyperirrational.?? Proof of Proposition 5.4. From these two propositions, we can show that f is not continuous in any point. Let c be a rational number. Then f(c) = 1. By Proposition 5.6, there is a hyperirrational d in hal(c)\?Q, with f(d)=0. Since 06'1, we have that c ' d, but f(c)6' f(d), so f is not continuous in c. Now, let c be an irrational number. Then f(c) = 0. By Proposition 5.6, there is a hyperrational d ∈hal(c)∩?Q, and so f(d)=1. Again we have that c ' d, but f(c)6' f(d), so f is not continuous in c. So regardless of whether c is rational or irrational, f is not continuous in c, and therefore f is discontinuous in all points of R. ?
5.3 Theorems about continuity Theorem 5.7. If f and g are continuous at c, then f + g, f ?g and fg are continuous at c. Furthermore, if g(c)6=0, then f/g is also continuous at c. Proof. Assume that f and g are continuous at c. Hence when x ' c, we have that f(x) ' f(c) and g(x) ' g(c), and these values are all limited. It then follows from Proposition 3.2 that ? If x ' c, then (f +g)(x)= f(x)+g(x)' f(c)+g(c)=(f +g)(c), and so f +g is continuous at c. ? If x ' c, then (f ?g)(x)= f(x)?g(x)' f(c)?g(c)=(f ?g)(c), and so f ?g is continuous at c. ? If x ' c, then (fg)(x) = f(x)?g(x)' f(c)?g(c) = (fg)(c), and so fg is continuous at c.
14
? If x ' c, then (f/g)(x)= f(x)/g(x)' f(c)/g(c)=(f/g)(c). Note that we require that g(c)6=0, and so g(x)6'0, and we can apply Proposition 3.2. Hence f/g is continuous at c.?? Theorem 5.8. If f is continuous at c, and g is continuous at f(c), g ?f is continuous at c. Proof. Let x ' c. Since f is continuous at c, we have that f(x)' f(c). Since g is continuous at f(c), for any number v which is in?nitely close to f(c), we have that g(v) ' g(f(c)). Since f(x) is in?nitely close to f(c), we have that (g?f)(x)= g(f(x))' g(f(c))=(g?f)(c), which proves that g?f is continuous at c.?? Theorem 5.9 (The Intermediate Value Theorem). Let f: [a,b] → R be a continuous function. Then for every real number d strictly between f(a) and f(b) there exists a real number c ∈(a,b) such that f(c)= d. Proof. Assume that f(a) < d < f(b). The case where f(a) > d > f(b) is similar. For each n ∈N, we partition [a,b] into n subintervals of equal length b?a n . These intervals then have the endpoints pk = a + kb?a n for 0 ≤ k ≤ n. Now, we lets n be the greatest endpoint for which f(pk) < d. sn is then the maximum of the set {pk | f(pk) < d}, which exists since the set is ?nite and non-empty (it contains p0 = a since f(a) < d by assumption). Since f(b) > d, pn = b 6∈{pk | f(pk) < d}. Thereforewehavethat a ≤ sn < bforall n ∈N. Byconstructionof sn itmustbetruethat f(sn) < d ≤ f(sn+ b?a n ) for any n ∈N. By transfer, we conclude that both of these statements also hold for any n ∈?N. Now, let N be an unlimited hypernatural. We have that a ≤ sN < b, hences N is limited and has a shadow c =sh(sN)∈R. Now, since N is unlimited, b?a N is in?nitesimal, and so we have that sN ' c and sN + b?a N ' c. Now, by theassumption that f is continuous, and our equivalent formulation of continuity, we have that f(sN)' f(c) and fsN + b?a N ' f(c). Therefore, it is the casethat f(c)' f(sN) < d ≤ fsN + b?a N ' f(c). Therefore f(c) ' d, but since both f(c) and d are real, we can conclude that f(c)= d, which completes the proof. ?
5.4 Uniform continuity The notion of uniform continuity is a strengthening of the ordinary notion of continuity, and can be expressed with the formal sentence (?ε ∈ R+)(?δ ∈ R+)(?x,y ∈ A)(|x?y| < δ →|f(x)?f(y)| < ε). The big di?erence here is that for a given ε, the same δ should work for all x,y ∈ A, whereas in the ordinary notion of continuity, δ can depend on x. Theorem 5.10. The function f: A →R is uniformly continuous on A if and only if f(x)' f(y) whenever x ' y for all x,y ∈?A.
15
Proof. This can be proven in a similar manner to the theorem for standard continuity, but then using the formal sentence (?ε ∈ R+)(?δ ∈ R+)(?x,y ∈ A)(|x?y| < δ →|f(x)?f(y)| < ε).?? Theorem 5.11. If f is continuous on [a,b], then f is uniformly continuous on [a,b]. Proof. Assume that f is continuous. Now, take hyperreals x,y ∈ ?[a,b] with x ' y. Let c = sh(x). Then since a ≤ x ≤ b, and x ' c, then c ∈ [a,b], and so by assumption f is continuous at c. Since both c ' x and c ' y, we have that f(c)' f(x) and f(c)' f(y) by the continuity of f. By the transitivity of ', we conclude that f(x)' f(y), and hence that f is uniformly continuous on [a,b].?? Remark. This proof does not transfer to more general intervals (for example (0,1) or [0,∞]) since it is a necessary part of the proof that the shadow of x is contained in the original interval, but for these intervals this is not guaranteed. As an example, let (0,1) be our interval and let x = ε be a positive in?nitesimal, which is in ?(0,1). Then c =sh(x)=06∈(0,1). Proposition 5.12. f(x)= 1 x is not uniformly continuous on (0,1). Proof. Let H be any positive unlimited hyperreal. Then H +1 is also unlimited. Hence both 1 H and 1 H+1 are positive in?nitesimals, and hence we have 1 H ' 1 H+1 and 1 H , 1 H+1 ∈?(0,1). Howeverf1 H= H andf1 H+1= H+1,butH 6' H+1.Therefore we have x,y ∈ ?(0,1) such that f(x) 6' f(y), so f is not uniformlycontinuous. ?
6 Limits and derivatives 6.1 Limits in hyperreal calculus In order to talk about derivatives of functions, we want to be able to talk about limits of functions. In standard analysis, L is the limit of f as x goes to c, written limx→c f(x) = L if for any ε ∈ R+, there exists a δ ∈ R+ such that |f(x)?L| < ε whenever|x?c| < δ. Theintuitionbehindthisde?nitionisthat f gets very close to L as x gets very close to c. The de?nition using non-standard analysis formalizes the intuitive idea that f is in?nitely close to L when x is in?nitely close to c. Given c,L ∈R and a function f de?ned on A ?R, we have that lim x→c f(x)= L ?? f(x)' L for all x ∈?A with x ' c and x 6= c. Similarly, onecande?nedi?erenttypesoflimits, bothone-sidedlimitsandlimits as x tends to ∞. We have that ? limx→c+ f(x)= L i? f(x)' L for all x ∈?A with x ' c and x > c. ? limx→c? f(x)= L i? f(x)' L for all x ∈?A with x ' c and x < c. ? limx→+∞f(x)= L i? f(x)' L for all x ∈?A+ ∞ (and ?A+ ∞ 6=?).
16
? limx→?∞f(x)= L i? f(x)' L for all x ∈?A? ∞
(and ?A? ∞ 6=?). These can be proved in a similar manner to the related theorems for continuity or for convergence, but we will not give the proof here.
6.2 Differentiation in hyperreal calculus In standard analysis, we say that f is di?erentiable at x if
lim h→0
f(x+h)?f(x) h exists, and if it does, we let f0(x) denote the derivative of f in x and f0(x) = limh→0 f(x+h)?f(x) h . Theorem 6.1. If f is de?ned at x ∈R, then L ∈R is the derivative of f at x if and only if for every nonzero in?nitesimal ε, f(x+ε) is de?ned, and f(x+ε)?f(x) ε ' L. Proof. Let g(h) = f(x+h)?f(x) h . Then the statement that limh→0 g(h) = L isequivalent with f having derivative L at x, and so applying the characterisation of limits from Section 6.1, the theorem follows.?? This means that when f is di?erentiable, we can ?nd the derivative as f0(x)= shf(x+ε)?f(x) ε for any non-zero in?nitesimal ε. 6.3 Examples Proposition 6.2. The function f(x) = x2 is di?erentiable at any x ∈R, and f0(x)=2x for all x ∈R. Proof. Using the de?nition, we want to show that f(x+ε)?f(x) ε ' 2x for anyin?nitesimal ε 6=0 and real x. By straightforward calculations, we have that f(x+ε)?f(x) ε = (x+ε)2?x2 ε = x2 +2xε+ε2?x2 ε = ε(2x+ε) ε =2x+ε '2x Since for any ε, f(x+ε)?f(x) ε ' 2x, by Theorem 6.1, f is di?erentiable at allx ∈R, and f0(x)=2x, as we wanted to show.?? Proposition 6.3. The function f(x)=|x| is not di?erentiable at x =0. Proof. Let ε be some positive in?nitesimal. Then f(x+ε)?f(x) ε = |0+ε|?|0| ε = ε ε =1.
17
However, we also have that f(x+(?ε))?f(x) ε
= |0+(?ε)|?|0| ?ε
= ε ?ε
=?1.
Since ?16'1, we have that f(x+ε)?f(x) ε 6' f(x+δ)?f(x) δ for two non-zero in?nitesimals ε and δ = ?ε, and so they can not both be in?nitely close to the same real number L, which means that f is not di?erentiable at 0. ?
6.4 Increments We introduce some notation to simplify our arguments. Let ?x denote som non-zero in?nitesimal, representing a small change or an increment in the value of x. Then we let ?f = f(x+?x)?f(x) denote the corresponding increment in the value of f at x. To be explicit, we should write this as ?f(x,?x), since this value depends on both those variables, but we will mainly use the more convinient shorthand ?f. The way we will use this shorthand is to compute ?f ?x, and if this is always in?nitely close to the same real number, then we have that f0(x)=sh(?f ?x). But since ?f ?x is just an ordinary fraction of hyperreal numbers, we can compute ?f on its own, something which will be useful. An important thing to note is that if f is di?erentiable at x, ?f ?x ' f0(x), and so ?f ?x is limited. Since ?f = ?f ?x?x, we then have that ?f is in?nitesimal, and thus f(x+?x)' f(x) for all in?nitesimal ?x. This proves that Theorem6.4. Ifafunction f: A →Risdi?erentiableat x, then f iscontinuous at x. The lemma that follows is needed mainly in our proof of the chain rule. Lemma 6.5 (Incremental Equation). If f0(x) exists at real x and ?x is in?nitesimal, then there exists an in?nitesimal ε, dependent on x and ?x, such that ?f = f0(x)?x+ε?x Proof. Sincef0(x)exists,wehavethatf0(x)' ?f ?x,andhencethatf0(x)??f ?x = ε for some in?ntesimal ε. Multiplying through by ?x and rearranging, we get that ?f = f0(x)?x+ε?x, which is what we wanted. ?
6.5 Theorems about derivatives Theorem 6.6. If f and g are di?erentiable at x, so is f +g and fg, and we have that ? (f +g)0(x)= f0(x)+g0(x) ? (fg)0(x)= f(x)g0(x)+g(x)f0(x). Proof. We take the case of addition. First we compute ?(f +g). We have that ?(f +g)=(f(x+?x)+g(x+?x))?(f(x)+g(x)) =(f(x+?x)?f(x))+(g(x+?x)?g(x)) =?f +?g
18
and hence that
?(f +g) ?x = ?f ?x + ?g ?x ' f0(x)+g0(x) under the assumption that both f and g are di?erentiable. Since the real value f0(x)+ g0(x) is independent of ?x, we conclude, by Theorem 6.1, that (f +g)0(x)= f0(x)+g0(x). For our proof of the statement regarding multiplication, we need a little trick, namely that f(x+?x)= f(x)+(f(x+?x)?f(x))= f(x)+?f. Then we get that ?(fg)= f(x+?x)g(x+?x)?f(x)g(x) =(f(x)+?f)(g(x)+?g)?f(x)g(x) = f(x)?g +g(x)?f +?f?g which yields that ?(fg) ?x = f(x)?g ?x +g(x)?f ?x + ?f ?x?g ' f(x)g0(x)+g(x)f0(x)+0 where we again use that g and f are di?erentiable. The last term is 0 since ?f ?x is limited and ?g is in?nitesimal. Since this last real number is independent of ?x, weconclude,byapplyingTheorem6.1,that(fg)0(x)= f(x)g0(x)+g(x)f0(x).?? Theorem6.7(ChainRule). If f isdi?erentiableat x ∈R, and g isdi?erentiable at f(x), then g?f is di?erentiable at x with derivative g0(f(x))f0(x). Proof. For any non-zero in?nitesimal ?x, f(x+?x) is de?ned and f(x+?x)' f(x). Since g0(f(x)) exists, g is de?ned at all points in?nitely close to f(x), which means that (g?f)(x+?x)= g(f(x+?x)) is de?ned. Now, we want to express ?(g ? f) in other terms. Again, we use thatf (x+?x)= f(x)+?f. We get that ?(g?f)= g(f(x+?x))?g(f(x))= g(f(x)+?f)?g(f(x)) which shows that ?(g?f) is also the increment of g at f(x) corresponding to ?f. Using the more explicit notation for increments, we have that ?(g?f)(x,?x)=?g(f(x),?f). By the incremental equation applied to g, there exists an in?nitesimal ε such that ?(g?f)= g0(f(x))?f +ε?f and hence that ?(g?f) ?x = g0(f(x))?f ?x +ε?f ?x ' g0(f(x))f0(x)+0 which establishes our claim, namely that g0(f(x))f0(x) is the derivative of g?f at x. ?
19
Theorem 6.8 (Critical Point Theorem). Let f be de?ned on some open interval (a,b), and have a maximum or minimum at x ∈(a,b). If f is di?erentiable at x, then f0(x)=0. Proof. Let f have a maximum at x. By the transfer principle, we conclude that f(x+?x)≤ f(x) and thus that f(x+?x)?f(x)≤0 for all in?nitesimal ?x. Hence for a positive in?nitesimal ε and a negative in?nitesimal δ, we have that f0(x)' f(x+ε)?f(x) ε ≤0≤ f(x+δ)?f(x) δ ' f0(x). Since f0(x) is real, it must be equal to 0. The case when f has a minimum is similar. ?
References
[Gol98] Robert Goldblatt. Lectures on the hyperreals. An introduction to nonstandard analysis. Springer-Verlag, New York, 1998.
[Kei76] H. Jerome Keisler. Foundations of in?nitesimal calculus. 1976.

?

?

總結

以上是生活随笔為你收集整理的预告:无穷小微积分改版,寻找接班人的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

日韩欧美成人免费观看 | 色一情一乱一伦一视频免费看 | 蜜桃av蜜臀av色欲av麻 999久久久国产精品消防器材 | 人人妻人人澡人人爽欧美一区九九 | 亚洲精品国产第一综合99久久 | 免费观看激色视频网站 | 国产三级久久久精品麻豆三级 | 97久久国产亚洲精品超碰热 | 免费视频欧美无人区码 | 日本免费一区二区三区最新 | 伊人久久大香线蕉av一区二区 | 久久99精品国产麻豆蜜芽 | 欧美刺激性大交 | 成人性做爰aaa片免费看不忠 | 露脸叫床粗话东北少妇 | 亚洲熟女一区二区三区 | 激情五月综合色婷婷一区二区 | 色情久久久av熟女人妻网站 | 青青草原综合久久大伊人精品 | 亚洲精品久久久久中文第一幕 | 亚洲欧洲中文日韩av乱码 | 国产精品久久久午夜夜伦鲁鲁 | 亚洲人成影院在线无码按摩店 | 国产内射爽爽大片视频社区在线 | 精品国产aⅴ无码一区二区 | 伊人久久大香线蕉午夜 | 男人扒开女人内裤强吻桶进去 | 国产成人无码av片在线观看不卡 | 色偷偷人人澡人人爽人人模 | 精品国产成人一区二区三区 | 国产在线一区二区三区四区五区 | 亚洲毛片av日韩av无码 | 亚洲熟熟妇xxxx | 成人免费视频视频在线观看 免费 | 人人妻人人澡人人爽人人精品浪潮 | 亚洲精品一区三区三区在线观看 | 久久久久久av无码免费看大片 | 天堂无码人妻精品一区二区三区 | 国产婷婷色一区二区三区在线 | 国产三级精品三级男人的天堂 | 18禁黄网站男男禁片免费观看 | 国产精品美女久久久 | 九九综合va免费看 | 免费人成在线观看网站 | 国产精品久久久 | 午夜精品久久久久久久 | 成人亚洲精品久久久久软件 | 日韩人妻系列无码专区 | 色一情一乱一伦一区二区三欧美 | 捆绑白丝粉色jk震动捧喷白浆 | 亚洲人交乣女bbw | 1000部夫妻午夜免费 | 久久久久成人精品免费播放动漫 | 亚洲色成人中文字幕网站 | 免费播放一区二区三区 | 国产乱人无码伦av在线a | 日本一区二区三区免费高清 | 欧洲熟妇精品视频 | 国产成人精品视频ⅴa片软件竹菊 | 国产午夜亚洲精品不卡 | 亚洲欧美日韩国产精品一区二区 | 国产精品.xx视频.xxtv | 久久天天躁夜夜躁狠狠 | 特大黑人娇小亚洲女 | 在线播放免费人成毛片乱码 | 成人精品视频一区二区 | 亚洲高清偷拍一区二区三区 | 欧美人与牲动交xxxx | 樱花草在线社区www | 日本xxxx色视频在线观看免费 | 国产高潮视频在线观看 | 精品久久久久久亚洲精品 | 免费看男女做好爽好硬视频 | 久久精品中文字幕一区 | 久久久无码中文字幕久... | 国内揄拍国内精品人妻 | 国产精品国产三级国产专播 | 国产女主播喷水视频在线观看 | 人人妻在人人 | 国产免费久久久久久无码 | 综合激情五月综合激情五月激情1 | 少妇太爽了在线观看 | 人妻无码久久精品人妻 | 日本xxxx色视频在线观看免费 | 精品国产一区二区三区四区在线看 | 久热国产vs视频在线观看 | 无码成人精品区在线观看 | 久久99久久99精品中文字幕 | 永久免费观看国产裸体美女 | 国产人妻精品午夜福利免费 | 噜噜噜亚洲色成人网站 | 国产精品沙发午睡系列 | 国产性猛交╳xxx乱大交 国产精品久久久久久无码 欧洲欧美人成视频在线 | 中文字幕乱码人妻无码久久 | 久久久精品成人免费观看 | 国产精品久久久久久久影院 | 十八禁视频网站在线观看 | 乌克兰少妇性做爰 | 亚洲乱码中文字幕在线 | 亚洲欧美日韩国产精品一区二区 | 欧美黑人巨大xxxxx | 国产精品亚洲一区二区三区喷水 | 亚洲色欲久久久综合网东京热 | 精品 日韩 国产 欧美 视频 | 99久久无码一区人妻 | 大肉大捧一进一出好爽视频 | 欧美精品无码一区二区三区 | 精品国产一区二区三区av 性色 | 亚洲色成人中文字幕网站 | 俺去俺来也www色官网 | 久久精品中文字幕大胸 | 日本大香伊一区二区三区 | 性欧美大战久久久久久久 | 国产性生交xxxxx无码 | 亚洲中文字幕在线无码一区二区 | 色欲av亚洲一区无码少妇 | 国产亚洲精品久久久ai换 | 日韩成人一区二区三区在线观看 | 特黄特色大片免费播放器图片 | 国产精品无码mv在线观看 | 全黄性性激高免费视频 | 国产特级毛片aaaaaa高潮流水 | 国产免费久久精品国产传媒 | 内射巨臀欧美在线视频 | 少妇性俱乐部纵欲狂欢电影 | 鲁一鲁av2019在线 | 2019午夜福利不卡片在线 | 亚洲国产精华液网站w | 国产特级毛片aaaaaaa高清 | 中文字幕无码av波多野吉衣 | 亚洲成a人一区二区三区 | 免费无码的av片在线观看 | 少妇被黑人到高潮喷出白浆 | 国产精品久久久 | 在线观看欧美一区二区三区 | 久久精品人人做人人综合试看 | 中文字幕日产无线码一区 | 成 人 免费观看网站 | 婷婷五月综合缴情在线视频 | 精品一区二区三区无码免费视频 | 日韩精品成人一区二区三区 | 动漫av网站免费观看 | 亚洲国产精品久久久天堂 | 精品国产一区av天美传媒 | 97色伦图片97综合影院 | 无码人妻出轨黑人中文字幕 | 无套内谢老熟女 | 亚洲国产精品美女久久久久 | 日韩少妇白浆无码系列 | 极品尤物被啪到呻吟喷水 | 免费乱码人妻系列无码专区 | 日韩视频 中文字幕 视频一区 | 国产精品久久精品三级 | 久久国产精品二国产精品 | 国产日产欧产精品精品app | 日韩视频 中文字幕 视频一区 | 久久久久久久女国产乱让韩 | 99久久久无码国产aaa精品 | 亚洲区欧美区综合区自拍区 | 国产av一区二区精品久久凹凸 | 亚洲欧洲中文日韩av乱码 | 日日夜夜撸啊撸 | 国产精品办公室沙发 | 久久国产36精品色熟妇 | 欧美野外疯狂做受xxxx高潮 | 天堂а√在线地址中文在线 | 伊人久久大香线蕉午夜 | 少妇人妻大乳在线视频 | 丝袜 中出 制服 人妻 美腿 | 中文无码成人免费视频在线观看 | 老太婆性杂交欧美肥老太 | 色婷婷欧美在线播放内射 | 真人与拘做受免费视频 | 国产精品久久国产三级国 | 丰满诱人的人妻3 | 日本一区二区更新不卡 | 国产无遮挡又黄又爽又色 | 激情内射日本一区二区三区 | 亚洲va欧美va天堂v国产综合 | 偷窥村妇洗澡毛毛多 | 亚洲人亚洲人成电影网站色 | 午夜理论片yy44880影院 | 夜夜高潮次次欢爽av女 | 欧美三级a做爰在线观看 | 人妻人人添人妻人人爱 | 成人性做爰aaa片免费看不忠 | 高中生自慰www网站 | 亚洲精品欧美二区三区中文字幕 | 99久久久无码国产精品免费 | 性色欲网站人妻丰满中文久久不卡 | 一区二区三区乱码在线 | 欧洲 | 特黄特色大片免费播放器图片 | 久久国产精品精品国产色婷婷 | 国产精华av午夜在线观看 | 在线精品亚洲一区二区 | 亚洲中文字幕久久无码 | 欧美人与禽zoz0性伦交 | 日韩成人一区二区三区在线观看 | 99久久人妻精品免费二区 | 成人三级无码视频在线观看 | 日韩av激情在线观看 | 欧美成人高清在线播放 | 久久精品99久久香蕉国产色戒 | 大地资源网第二页免费观看 | 久久久久久久久888 | 亚洲乱码中文字幕在线 | 色欲人妻aaaaaaa无码 | 高中生自慰www网站 | 亚洲色无码一区二区三区 | 色欲av亚洲一区无码少妇 | 露脸叫床粗话东北少妇 | 一本久久a久久精品vr综合 | 国产人妻久久精品二区三区老狼 | 55夜色66夜色国产精品视频 | 强辱丰满人妻hd中文字幕 | 欧美老人巨大xxxx做受 | 无码帝国www无码专区色综合 | 国内老熟妇对白xxxxhd | 日本一本二本三区免费 | 亚洲精品美女久久久久久久 | 精品久久久久久人妻无码中文字幕 | 真人与拘做受免费视频 | 精品无人国产偷自产在线 | 97无码免费人妻超级碰碰夜夜 | 亚洲日韩一区二区三区 | 亚洲春色在线视频 | 性史性农村dvd毛片 | 呦交小u女精品视频 | 国产内射爽爽大片视频社区在线 | 四虎国产精品免费久久 | 亚洲色www成人永久网址 | 麻豆果冻传媒2021精品传媒一区下载 | 国产亚洲精品久久久闺蜜 | 国产av无码专区亚洲a∨毛片 | 丰满少妇熟乱xxxxx视频 | 免费人成在线观看网站 | 国产午夜视频在线观看 | 夜先锋av资源网站 | 成人无码精品一区二区三区 | 久久久久久九九精品久 | 国产口爆吞精在线视频 | 久久国产精品偷任你爽任你 | 亚洲 日韩 欧美 成人 在线观看 | 精品久久久久久人妻无码中文字幕 | 免费看男女做好爽好硬视频 | 久精品国产欧美亚洲色aⅴ大片 | 国产人妻精品一区二区三区 | 亚洲人成网站免费播放 | 日本精品少妇一区二区三区 | 亚洲精品综合一区二区三区在线 | 精品国产aⅴ无码一区二区 | 一本久久a久久精品vr综合 | 亚洲男女内射在线播放 | 人妻天天爽夜夜爽一区二区 | 久久久婷婷五月亚洲97号色 | 国产亚洲精品久久久ai换 | 国产九九九九九九九a片 | 99视频精品全部免费免费观看 | 免费乱码人妻系列无码专区 | 67194成是人免费无码 | 欧美激情内射喷水高潮 | 亚洲午夜福利在线观看 | 无人区乱码一区二区三区 | 久久久久av无码免费网 | 无码国产激情在线观看 | 亚洲 a v无 码免 费 成 人 a v | 午夜精品一区二区三区的区别 | 成年美女黄网站色大免费全看 | 男人扒开女人内裤强吻桶进去 | 国产97在线 | 亚洲 | 国产精品久久久久9999小说 | 亚洲精品美女久久久久久久 | 精品无人区无码乱码毛片国产 | 狠狠噜狠狠狠狠丁香五月 | 5858s亚洲色大成网站www | 国产亚洲精品精品国产亚洲综合 | 麻豆果冻传媒2021精品传媒一区下载 | 波多野结衣av在线观看 | 天天做天天爱天天爽综合网 | 国产真实夫妇视频 | 欧美黑人乱大交 | 日韩精品成人一区二区三区 | 亚洲日韩av一区二区三区四区 | 99久久精品日本一区二区免费 | 丰满人妻被黑人猛烈进入 | 国产做国产爱免费视频 | 大肉大捧一进一出视频出来呀 | 久久99精品久久久久久动态图 | 欧美日本免费一区二区三区 | 国产高清不卡无码视频 | 成人无码精品1区2区3区免费看 | 日韩人妻无码一区二区三区久久99 | 色五月五月丁香亚洲综合网 | 麻花豆传媒剧国产免费mv在线 | 丁香花在线影院观看在线播放 | 免费视频欧美无人区码 | 日韩欧美群交p片內射中文 | 国产艳妇av在线观看果冻传媒 | 老太婆性杂交欧美肥老太 | a片免费视频在线观看 | 装睡被陌生人摸出水好爽 | 国产精品久久久久久久9999 | 无码人妻精品一区二区三区不卡 | 国产精品国产自线拍免费软件 | 中文字幕中文有码在线 | 国产精品久久国产精品99 | 99视频精品全部免费免费观看 | 久青草影院在线观看国产 | 狠狠cao日日穞夜夜穞av | 亚洲国产成人av在线观看 | 精品无码av一区二区三区 | 乱码午夜-极国产极内射 | 国产精品亚洲综合色区韩国 | 亚洲中文字幕成人无码 | 特黄特色大片免费播放器图片 | 伊人色综合久久天天小片 | 日日噜噜噜噜夜夜爽亚洲精品 | 日韩欧美成人免费观看 | 丝袜 中出 制服 人妻 美腿 | 性生交片免费无码看人 | 无码吃奶揉捏奶头高潮视频 | 秋霞成人午夜鲁丝一区二区三区 | 欧美黑人性暴力猛交喷水 | 麻花豆传媒剧国产免费mv在线 | 亚洲一区av无码专区在线观看 | 国产精品二区一区二区aⅴ污介绍 | 极品尤物被啪到呻吟喷水 | 精品无码一区二区三区的天堂 | 一本大道久久东京热无码av | 久久人人爽人人人人片 | 国产九九九九九九九a片 | 国产精品久久久一区二区三区 | 大地资源网第二页免费观看 | 国产精品久久久av久久久 | 成人亚洲精品久久久久软件 | 国产午夜亚洲精品不卡 | 高清国产亚洲精品自在久久 | 国内精品人妻无码久久久影院蜜桃 | 99久久人妻精品免费二区 | 欧美xxxx黑人又粗又长 | 久久97精品久久久久久久不卡 | 日本一卡二卡不卡视频查询 | 激情内射日本一区二区三区 | 亚洲区小说区激情区图片区 | 国产成人综合在线女婷五月99播放 | 成人无码视频在线观看网站 | 人妻少妇精品无码专区二区 | 亚洲色欲久久久综合网东京热 | 国产成人无码a区在线观看视频app | 国内少妇偷人精品视频 | 国产农村乱对白刺激视频 | 男女超爽视频免费播放 | 男人的天堂av网站 | 国产精品99爱免费视频 | 久青草影院在线观看国产 | 人人妻人人澡人人爽人人精品浪潮 | 日韩人妻无码中文字幕视频 | 99riav国产精品视频 | 久久国产精品偷任你爽任你 | 国产人成高清在线视频99最全资源 | 国产精品国产自线拍免费软件 | 一本无码人妻在中文字幕免费 | 99久久人妻精品免费二区 | 男人的天堂av网站 | 亚洲成色www久久网站 | 久久 国产 尿 小便 嘘嘘 | 18禁止看的免费污网站 | 99精品无人区乱码1区2区3区 | 国产网红无码精品视频 | 久久国产精品精品国产色婷婷 | 国产在热线精品视频 | 日本大香伊一区二区三区 | 日本乱人伦片中文三区 | 亚洲gv猛男gv无码男同 | 欧美性生交xxxxx久久久 | 少妇久久久久久人妻无码 | 玩弄中年熟妇正在播放 | 少妇性l交大片 | 亚洲日韩中文字幕在线播放 | 强奷人妻日本中文字幕 | 久久久久成人精品免费播放动漫 | 99久久亚洲精品无码毛片 | 日本一区二区三区免费高清 | 国产婷婷色一区二区三区在线 | 少妇性l交大片欧洲热妇乱xxx | 国产农村妇女高潮大叫 | 欧美自拍另类欧美综合图片区 | 兔费看少妇性l交大片免费 | 欧美性猛交内射兽交老熟妇 | 色欲人妻aaaaaaa无码 | 超碰97人人射妻 | 国产精品对白交换视频 | 成人精品视频一区二区 | 亚洲 另类 在线 欧美 制服 | 中文无码精品a∨在线观看不卡 | 少妇久久久久久人妻无码 | av人摸人人人澡人人超碰下载 | 99久久久无码国产aaa精品 | 亚洲国精产品一二二线 | 精品乱码久久久久久久 | 欧美一区二区三区视频在线观看 | 色婷婷综合中文久久一本 | 久久亚洲中文字幕精品一区 | 国产精品久久久一区二区三区 | 黑人巨大精品欧美一区二区 | 伊人色综合久久天天小片 | 久久人人爽人人人人片 | 午夜熟女插插xx免费视频 | 中文毛片无遮挡高清免费 | 国产精品无码久久av | 亚洲区欧美区综合区自拍区 | 午夜免费福利小电影 | 麻花豆传媒剧国产免费mv在线 | 成年女人永久免费看片 | 欧美日韩综合一区二区三区 | 中文字幕久久久久人妻 | 欧美 亚洲 国产 另类 | 狠狠色欧美亚洲狠狠色www | 精品国产乱码久久久久乱码 | 一本加勒比波多野结衣 | 欧美精品一区二区精品久久 | 少妇无套内谢久久久久 | 超碰97人人做人人爱少妇 | 久久综合狠狠综合久久综合88 | 无码av免费一区二区三区试看 | 国产香蕉尹人视频在线 | 亚洲国产一区二区三区在线观看 | 国产av无码专区亚洲awww | 青青久在线视频免费观看 | 狠狠亚洲超碰狼人久久 | 亚洲 欧美 激情 小说 另类 | 成人精品天堂一区二区三区 | 国产精品毛片一区二区 | 国产免费无码一区二区视频 | 亚洲第一网站男人都懂 | a国产一区二区免费入口 | 18禁止看的免费污网站 | 欧美成人午夜精品久久久 | 国产成人无码午夜视频在线观看 | 未满小14洗澡无码视频网站 | 国产激情无码一区二区 | 亚洲熟妇色xxxxx欧美老妇 | 中文字幕无码日韩欧毛 | 国产午夜亚洲精品不卡 | 欧美精品在线观看 | 国产精品无码mv在线观看 | 免费视频欧美无人区码 | 内射后入在线观看一区 | 51国偷自产一区二区三区 | 久久99久久99精品中文字幕 | 色窝窝无码一区二区三区色欲 | 影音先锋中文字幕无码 | www一区二区www免费 | 台湾无码一区二区 | 中文字幕人妻无码一区二区三区 | 国产激情综合五月久久 | 妺妺窝人体色www婷婷 | 2020最新国产自产精品 | 亚洲综合伊人久久大杳蕉 | 天天综合网天天综合色 | 成人aaa片一区国产精品 | 国语精品一区二区三区 | 国产色在线 | 国产 | 少女韩国电视剧在线观看完整 | 福利一区二区三区视频在线观看 | 国产精品无套呻吟在线 | 国产成人无码专区 | √天堂资源地址中文在线 | 伊人久久婷婷五月综合97色 | 狠狠色噜噜狠狠狠7777奇米 | 色婷婷综合激情综在线播放 | 美女毛片一区二区三区四区 | 99久久精品无码一区二区毛片 | 中文字幕乱码中文乱码51精品 | 波多野结衣乳巨码无在线观看 | 久久精品人人做人人综合试看 | 国产欧美亚洲精品a | av无码不卡在线观看免费 | 午夜男女很黄的视频 | 精品国产青草久久久久福利 | 亚洲啪av永久无码精品放毛片 | 国产内射爽爽大片视频社区在线 | 午夜性刺激在线视频免费 | 中文字幕无码人妻少妇免费 | 300部国产真实乱 | 狠狠色噜噜狠狠狠7777奇米 | 国产偷抇久久精品a片69 | 波多野结衣一区二区三区av免费 | 亚洲人成影院在线无码按摩店 | 伊人色综合久久天天小片 | 精品国产精品久久一区免费式 | 欧美日韩在线亚洲综合国产人 | 国产亚洲精品久久久久久国模美 | 亚洲色偷偷男人的天堂 | 亚洲 另类 在线 欧美 制服 | 好男人www社区 | 国产精品久久久久7777 | 18无码粉嫩小泬无套在线观看 | 在线精品亚洲一区二区 | 成年美女黄网站色大免费全看 | 日韩人妻无码一区二区三区久久99 | 国产成人无码午夜视频在线观看 | 久久久久久久久蜜桃 | 国产精品久久久久影院嫩草 | 精品无人区无码乱码毛片国产 | 午夜精品一区二区三区在线观看 | 日韩在线不卡免费视频一区 | 欧美性生交xxxxx久久久 | 久久久亚洲欧洲日产国码αv | 免费无码av一区二区 | 风流少妇按摩来高潮 | 国产精品美女久久久久av爽李琼 | 国产精品18久久久久久麻辣 | 丝袜美腿亚洲一区二区 | 国产一区二区三区影院 | 欧美成人免费全部网站 | 最近中文2019字幕第二页 | 午夜精品久久久内射近拍高清 | 久久综合网欧美色妞网 | 老熟女重囗味hdxx69 | 又粗又大又硬毛片免费看 | 亚洲无人区一区二区三区 | 51国偷自产一区二区三区 | 久久久久免费看成人影片 | 欧美怡红院免费全部视频 | a片在线免费观看 | 综合网日日天干夜夜久久 | 夜先锋av资源网站 | 亚洲精品一区二区三区大桥未久 | 高清国产亚洲精品自在久久 | 国产亚洲精品久久久ai换 | 亚洲中文无码av永久不收费 | 又紧又大又爽精品一区二区 | 亚洲成av人影院在线观看 | 国产电影无码午夜在线播放 | 大地资源网第二页免费观看 | 麻豆人妻少妇精品无码专区 | 中文久久乱码一区二区 | 国产人成高清在线视频99最全资源 | 内射爽无广熟女亚洲 | 99国产精品白浆在线观看免费 | 东北女人啪啪对白 | 极品尤物被啪到呻吟喷水 | 欧美日韩一区二区免费视频 | 婷婷丁香六月激情综合啪 | 少妇性l交大片 | 少妇性荡欲午夜性开放视频剧场 | 成人免费视频在线观看 | 2020久久香蕉国产线看观看 | 国产成人无码a区在线观看视频app | 国内精品九九久久久精品 | 无码精品人妻一区二区三区av | 荫蒂被男人添的好舒服爽免费视频 | 久久久久久亚洲精品a片成人 | 精品偷自拍另类在线观看 | 日本一卡2卡3卡4卡无卡免费网站 国产一区二区三区影院 | 亚洲一区二区三区四区 | 无码精品国产va在线观看dvd | 欧美精品免费观看二区 | 一本久道久久综合婷婷五月 | 婷婷六月久久综合丁香 | 日韩视频 中文字幕 视频一区 | 性欧美熟妇videofreesex | 亚洲精品一区三区三区在线观看 | 亚洲精品一区二区三区在线观看 | 又大又紧又粉嫩18p少妇 | 人人妻人人澡人人爽欧美一区 | 日本精品久久久久中文字幕 | 国产成人精品视频ⅴa片软件竹菊 | 亚洲男人av香蕉爽爽爽爽 | 色五月五月丁香亚洲综合网 | 波多野结衣乳巨码无在线观看 | 人人妻人人澡人人爽精品欧美 | 牛和人交xxxx欧美 | 性欧美疯狂xxxxbbbb | 暴力强奷在线播放无码 | 国产手机在线αⅴ片无码观看 | 国产一区二区三区四区五区加勒比 | 成熟人妻av无码专区 | 强开小婷嫩苞又嫩又紧视频 | 国产成人精品必看 | 亚洲精品一区二区三区婷婷月 | 中文字幕av无码一区二区三区电影 | 国产亚洲精品久久久久久久 | 青青青手机频在线观看 | 在线天堂新版最新版在线8 | 暴力强奷在线播放无码 | 亚洲精品综合五月久久小说 | 国产精品久久久久久亚洲影视内衣 | 一个人免费观看的www视频 | 无码国模国产在线观看 | 亚洲精品成人福利网站 | 无遮挡国产高潮视频免费观看 | 国产精品久久久久久亚洲毛片 | 国产精品久久精品三级 | 亚洲一区二区三区 | 极品嫩模高潮叫床 | 精品国产福利一区二区 | 亚洲精品久久久久久久久久久 | 日本熟妇大屁股人妻 | 免费无码肉片在线观看 | 国产美女极度色诱视频www | 99麻豆久久久国产精品免费 | 精品无码国产自产拍在线观看蜜 | 色妞www精品免费视频 | 国产午夜视频在线观看 | 九九热爱视频精品 | 人妻少妇被猛烈进入中文字幕 | 色婷婷久久一区二区三区麻豆 | 亚洲va中文字幕无码久久不卡 | 久久久久久久人妻无码中文字幕爆 | 日韩精品成人一区二区三区 | 丁香啪啪综合成人亚洲 | 97se亚洲精品一区 | 国产电影无码午夜在线播放 | 欧美老妇交乱视频在线观看 | 亚洲综合无码久久精品综合 | 97久久国产亚洲精品超碰热 | 国产肉丝袜在线观看 | 蜜臀av在线观看 在线欧美精品一区二区三区 | 久久综合九色综合97网 | 欧美性猛交xxxx富婆 | 精品国产成人一区二区三区 | 全球成人中文在线 | 无码国产激情在线观看 | 内射爽无广熟女亚洲 | 亚洲欧美日韩成人高清在线一区 | 国产精品高潮呻吟av久久 | 国产在线aaa片一区二区99 | 一本大道伊人av久久综合 | a国产一区二区免费入口 | av无码不卡在线观看免费 | 精品国偷自产在线 | 国产精品多人p群无码 | 超碰97人人做人人爱少妇 | 性欧美videos高清精品 | 亚洲成av人片天堂网无码】 | 亚洲色www成人永久网址 | 精品国精品国产自在久国产87 | 亚洲阿v天堂在线 | 日韩精品一区二区av在线 | 欧洲欧美人成视频在线 | 捆绑白丝粉色jk震动捧喷白浆 | 国产美女极度色诱视频www | 亚洲国产欧美日韩精品一区二区三区 | 欧美熟妇另类久久久久久多毛 | 兔费看少妇性l交大片免费 | 久久久久国色av免费观看性色 | 老太婆性杂交欧美肥老太 | 色婷婷欧美在线播放内射 | 对白脏话肉麻粗话av | 国产凸凹视频一区二区 | 无码av岛国片在线播放 | 久青草影院在线观看国产 | 日本免费一区二区三区最新 | 男人的天堂av网站 | 国产精品资源一区二区 | 少妇无码av无码专区在线观看 | 亚洲欧美日韩国产精品一区二区 | 日本乱偷人妻中文字幕 | 粗大的内捧猛烈进出视频 | 日韩少妇内射免费播放 | 亚洲精品午夜国产va久久成人 | 亚洲精品欧美二区三区中文字幕 | 中文字幕乱码亚洲无线三区 | 一本久道久久综合婷婷五月 | 狠狠色噜噜狠狠狠7777奇米 | 国产精品无码一区二区三区不卡 | 欧美日韩在线亚洲综合国产人 | 玩弄少妇高潮ⅹxxxyw | 亚洲日本在线电影 | 色综合久久久久综合一本到桃花网 | 日日摸夜夜摸狠狠摸婷婷 | 88国产精品欧美一区二区三区 | 日韩av无码中文无码电影 | 久久国产精品_国产精品 | 国产亚洲精品久久久久久久 | 久久精品中文闷骚内射 | 人人爽人人澡人人人妻 | 人人爽人人爽人人片av亚洲 | 久久熟妇人妻午夜寂寞影院 | 一本色道婷婷久久欧美 | 日韩精品久久久肉伦网站 | 日本一区二区三区免费播放 | 久久精品国产一区二区三区 | 国产日产欧产精品精品app | 久久久久se色偷偷亚洲精品av | 99在线 | 亚洲 | 国产成人综合在线女婷五月99播放 | 日韩视频 中文字幕 视频一区 | 国产亚洲欧美日韩亚洲中文色 | 久久精品成人欧美大片 | 久久人人爽人人爽人人片av高清 | 奇米综合四色77777久久 东京无码熟妇人妻av在线网址 | 精品乱子伦一区二区三区 | 一本加勒比波多野结衣 | 特黄特色大片免费播放器图片 | 啦啦啦www在线观看免费视频 | 国产精品va在线播放 | 亚洲精品国产品国语在线观看 | 国内揄拍国内精品少妇国语 | 亚洲а∨天堂久久精品2021 | 成人亚洲精品久久久久软件 | 学生妹亚洲一区二区 | 亚洲精品中文字幕 | 亚洲精品综合五月久久小说 | 国产特级毛片aaaaaaa高清 | 在线观看国产一区二区三区 | 国产尤物精品视频 | 国产午夜福利100集发布 | 丰满妇女强制高潮18xxxx | 国产疯狂伦交大片 | 无码中文字幕色专区 | 东京热无码av男人的天堂 | 性开放的女人aaa片 | 国产香蕉尹人综合在线观看 | 久久亚洲精品成人无码 | 国产超级va在线观看视频 | 在线看片无码永久免费视频 | 国产精品高潮呻吟av久久 | 成在人线av无码免观看麻豆 | 55夜色66夜色国产精品视频 | 久久97精品久久久久久久不卡 | 九月婷婷人人澡人人添人人爽 | 国产午夜精品一区二区三区嫩草 | 色偷偷人人澡人人爽人人模 | 亚洲第一无码av无码专区 | 任你躁国产自任一区二区三区 | 国产一区二区三区四区五区加勒比 | 亚洲a无码综合a国产av中文 | 东京无码熟妇人妻av在线网址 | 精品国产一区二区三区av 性色 | 亚洲一区二区三区 | 成人aaa片一区国产精品 | 欧美熟妇另类久久久久久不卡 | 日本又色又爽又黄的a片18禁 | 人妻尝试又大又粗久久 | 日日摸夜夜摸狠狠摸婷婷 | 狂野欧美性猛xxxx乱大交 | av人摸人人人澡人人超碰下载 | 亚洲 激情 小说 另类 欧美 | √8天堂资源地址中文在线 | 亚洲中文字幕在线无码一区二区 | 中文字幕乱码人妻二区三区 | 一本加勒比波多野结衣 | 亚洲熟女一区二区三区 | 精品aⅴ一区二区三区 | 久久久久久亚洲精品a片成人 | 熟妇人妻无码xxx视频 | 免费人成网站视频在线观看 | 国产激情无码一区二区 | 狠狠色丁香久久婷婷综合五月 | 97无码免费人妻超级碰碰夜夜 | 日本大香伊一区二区三区 | 亚洲精品综合一区二区三区在线 | 国产精品爱久久久久久久 | 亚洲人亚洲人成电影网站色 | www国产亚洲精品久久久日本 | 爽爽影院免费观看 | 亚洲国产精品美女久久久久 | 国产精品毛多多水多 | 亚洲国产欧美日韩精品一区二区三区 | 桃花色综合影院 | 草草网站影院白丝内射 | 欧美日本精品一区二区三区 | 国产猛烈高潮尖叫视频免费 | 日本va欧美va欧美va精品 | 亚洲人成人无码网www国产 | 在线观看免费人成视频 | 天下第一社区视频www日本 | 18无码粉嫩小泬无套在线观看 | 色综合天天综合狠狠爱 | 秋霞成人午夜鲁丝一区二区三区 | 国产精品久久久av久久久 | 久久久久99精品国产片 | 在线观看欧美一区二区三区 | 中文无码精品a∨在线观看不卡 | 国产日产欧产精品精品app | 久久久久99精品国产片 | 亚欧洲精品在线视频免费观看 | 免费国产成人高清在线观看网站 | 欧美国产日韩亚洲中文 | 日本大香伊一区二区三区 | 人妻有码中文字幕在线 | 无码中文字幕色专区 | 欧美成人免费全部网站 | 国产一区二区三区日韩精品 | 亚洲一区av无码专区在线观看 | 曰韩无码二三区中文字幕 | 国产乱人伦app精品久久 国产在线无码精品电影网 国产国产精品人在线视 | 九九久久精品国产免费看小说 | 精品一区二区三区无码免费视频 | 欧美成人免费全部网站 | 国产精品成人av在线观看 | 天天躁夜夜躁狠狠是什么心态 | 国产极品视觉盛宴 | 国产97人人超碰caoprom | 人人妻人人藻人人爽欧美一区 | 国产精品99爱免费视频 | 秋霞成人午夜鲁丝一区二区三区 | 欧美激情综合亚洲一二区 | аⅴ资源天堂资源库在线 | 国产一区二区三区日韩精品 | 国产性猛交╳xxx乱大交 国产精品久久久久久无码 欧洲欧美人成视频在线 | 九九久久精品国产免费看小说 | 人人爽人人澡人人高潮 | 亚洲欧洲日本无在线码 | 人妻夜夜爽天天爽三区 | 特级做a爰片毛片免费69 | 内射爽无广熟女亚洲 | 免费观看又污又黄的网站 | 中文字幕乱妇无码av在线 | 又紧又大又爽精品一区二区 | 国产黄在线观看免费观看不卡 | 人妻少妇精品无码专区动漫 | 少妇人妻大乳在线视频 | 久久亚洲中文字幕精品一区 | 中文字幕久久久久人妻 | 亚洲中文字幕乱码av波多ji | 精品乱子伦一区二区三区 | 一本无码人妻在中文字幕免费 | 中文字幕人妻无码一区二区三区 | 亚洲熟妇色xxxxx欧美老妇 | 免费中文字幕日韩欧美 | 少女韩国电视剧在线观看完整 | 久久久精品人妻久久影视 | 伊在人天堂亚洲香蕉精品区 | 亚洲第一网站男人都懂 | 精品无码国产自产拍在线观看蜜 | 成年美女黄网站色大免费全看 | 免费男性肉肉影院 | 精品久久综合1区2区3区激情 | 无码精品人妻一区二区三区av | 7777奇米四色成人眼影 | 无遮挡国产高潮视频免费观看 | 性开放的女人aaa片 | 免费看男女做好爽好硬视频 | 无码帝国www无码专区色综合 | 亚洲一区av无码专区在线观看 | 女人色极品影院 | 国产精品国产三级国产专播 | 久久视频在线观看精品 | 在线 国产 欧美 亚洲 天堂 | 亚洲一区二区三区无码久久 | 狂野欧美性猛交免费视频 | 一本色道婷婷久久欧美 | 少妇被黑人到高潮喷出白浆 | 精品国产乱码久久久久乱码 | 色 综合 欧美 亚洲 国产 | 国产凸凹视频一区二区 | 永久免费观看国产裸体美女 | 人妻互换免费中文字幕 | 国产又爽又黄又刺激的视频 | 又色又爽又黄的美女裸体网站 | 中文无码伦av中文字幕 | 日本欧美一区二区三区乱码 | 国产精品久久久久7777 | 国产av无码专区亚洲awww | 一本色道婷婷久久欧美 | 婷婷五月综合激情中文字幕 | 丰满少妇熟乱xxxxx视频 | 女人被爽到呻吟gif动态图视看 | 国内揄拍国内精品人妻 | 无码福利日韩神码福利片 | 亚洲精品久久久久久久久久久 | 激情五月综合色婷婷一区二区 | 少妇久久久久久人妻无码 | 久久久中文久久久无码 | 久久久av男人的天堂 | 国产精品嫩草久久久久 | 国产综合色产在线精品 | 国内揄拍国内精品人妻 | 亚洲人成人无码网www国产 | 久久国产精品精品国产色婷婷 | 国产疯狂伦交大片 | 成人一区二区免费视频 | 欧美日韩一区二区免费视频 | 九九久久精品国产免费看小说 | 国产精品爱久久久久久久 | 在线观看欧美一区二区三区 | 国产xxx69麻豆国语对白 | 精品久久综合1区2区3区激情 | 无码国产激情在线观看 | 欧美日本日韩 | 久久久久久久久888 | 少妇厨房愉情理9仑片视频 | a片在线免费观看 | 中文无码成人免费视频在线观看 | 麻豆国产人妻欲求不满 | 国产成人综合在线女婷五月99播放 | 97久久精品无码一区二区 | 久久精品国产大片免费观看 | av在线亚洲欧洲日产一区二区 | 亚洲精品欧美二区三区中文字幕 | 亚洲呦女专区 | 成人免费视频视频在线观看 免费 | 人人妻人人澡人人爽欧美精品 | 亚洲自偷自偷在线制服 | 欧美 丝袜 自拍 制服 另类 | 国产精品美女久久久久av爽李琼 | 激情爆乳一区二区三区 | 人人超人人超碰超国产 | 欧美成人午夜精品久久久 | 久久精品国产亚洲精品 | 水蜜桃av无码 | 在线亚洲高清揄拍自拍一品区 | 日欧一片内射va在线影院 | 国产精品毛多多水多 | 色老头在线一区二区三区 | 55夜色66夜色国产精品视频 | 成 人影片 免费观看 | 人妻少妇精品久久 | 中文毛片无遮挡高清免费 | 成人精品天堂一区二区三区 | 国产办公室秘书无码精品99 | 波多野结衣aⅴ在线 | 久精品国产欧美亚洲色aⅴ大片 | 性欧美疯狂xxxxbbbb | 亚洲乱码日产精品bd | 欧美精品无码一区二区三区 | 成人免费视频视频在线观看 免费 | 亚洲精品午夜国产va久久成人 | 人妻互换免费中文字幕 | 东北女人啪啪对白 | 亚洲国产精品一区二区美利坚 | 无码一区二区三区在线 | 日日躁夜夜躁狠狠躁 | 四十如虎的丰满熟妇啪啪 | 人人爽人人澡人人人妻 | 最新国产乱人伦偷精品免费网站 | a片在线免费观看 | www国产亚洲精品久久网站 | 樱花草在线社区www | 久久久中文久久久无码 | 色婷婷综合激情综在线播放 | 日韩少妇白浆无码系列 | 国产又粗又硬又大爽黄老大爷视 | 日日麻批免费40分钟无码 | 中文字幕 人妻熟女 | 国产精品第一区揄拍无码 | 东京一本一道一二三区 | 丰满少妇人妻久久久久久 | 天堂无码人妻精品一区二区三区 | 亚洲国产欧美国产综合一区 | 亚洲精品成a人在线观看 | 国产激情精品一区二区三区 | 久在线观看福利视频 | 国产女主播喷水视频在线观看 | 午夜性刺激在线视频免费 | 国产激情精品一区二区三区 | 无码人妻丰满熟妇区毛片18 | 国产人妻精品一区二区三区 | 久久久久久亚洲精品a片成人 | 欧美 亚洲 国产 另类 | 国产精品高潮呻吟av久久4虎 | 青青青手机频在线观看 | a在线观看免费网站大全 | 麻豆md0077饥渴少妇 | 麻豆人妻少妇精品无码专区 | 天天摸天天透天天添 | 亚洲精品美女久久久久久久 | 国产综合在线观看 | 国产 精品 自在自线 | 无码人妻出轨黑人中文字幕 | 亚洲人成人无码网www国产 | 国精产品一品二品国精品69xx | 欧美丰满熟妇xxxx性ppx人交 | 中文字幕无码热在线视频 | 成人一在线视频日韩国产 | 四虎影视成人永久免费观看视频 | 人妻无码αv中文字幕久久琪琪布 | 久久精品无码一区二区三区 | 亚洲娇小与黑人巨大交 | 永久免费观看国产裸体美女 | 四虎永久在线精品免费网址 | 久久精品成人欧美大片 | 日日鲁鲁鲁夜夜爽爽狠狠 | 亚洲无人区一区二区三区 | 免费无码肉片在线观看 | 99riav国产精品视频 | 久久亚洲a片com人成 | av人摸人人人澡人人超碰下载 | v一区无码内射国产 | 免费人成在线视频无码 | 亚洲成a人片在线观看日本 | 亚洲日韩av一区二区三区四区 | 中文精品无码中文字幕无码专区 | 欧美乱妇无乱码大黄a片 | 人人妻人人澡人人爽欧美精品 | 在线精品国产一区二区三区 | 欧美国产日韩亚洲中文 | 波多野结衣av一区二区全免费观看 | 日产精品高潮呻吟av久久 | 精品国产成人一区二区三区 | 国产片av国语在线观看 | 清纯唯美经典一区二区 | 装睡被陌生人摸出水好爽 | 青青草原综合久久大伊人精品 | 亚洲男人av香蕉爽爽爽爽 | 性欧美牲交xxxxx视频 | 99麻豆久久久国产精品免费 | 波多野结衣一区二区三区av免费 | 精品人妻人人做人人爽夜夜爽 | 国产精品a成v人在线播放 | 欧美xxxxx精品 | 18禁止看的免费污网站 | 亚洲国产精品一区二区第一页 | 激情亚洲一区国产精品 | 成在人线av无码免费 | 亚洲综合伊人久久大杳蕉 | 天天摸天天碰天天添 | 免费人成网站视频在线观看 | 免费乱码人妻系列无码专区 | 国产美女精品一区二区三区 | av人摸人人人澡人人超碰下载 | 成 人影片 免费观看 | 欧美 日韩 人妻 高清 中文 | 熟妇女人妻丰满少妇中文字幕 | 日韩av无码一区二区三区不卡 | 国产人妻大战黑人第1集 | 天下第一社区视频www日本 | 亚洲精品久久久久久久久久久 | 99久久久无码国产aaa精品 | 99久久精品国产一区二区蜜芽 | 亚洲一区二区观看播放 | 亚洲国产成人a精品不卡在线 | 国产精品无码久久av | 漂亮人妻洗澡被公强 日日躁 | 高潮毛片无遮挡高清免费视频 | 2019nv天堂香蕉在线观看 | 国产香蕉尹人综合在线观看 | 曰本女人与公拘交酡免费视频 | 无码av免费一区二区三区试看 | 国产深夜福利视频在线 | 日本一卡2卡3卡4卡无卡免费网站 国产一区二区三区影院 | 少妇太爽了在线观看 | 亚洲s色大片在线观看 | 国产免费久久精品国产传媒 | 午夜不卡av免费 一本久久a久久精品vr综合 | 无码国模国产在线观看 | 狠狠噜狠狠狠狠丁香五月 | 日韩亚洲欧美精品综合 | 亚洲人成网站色7799 | 中文字幕无码免费久久9一区9 | 国产精品怡红院永久免费 | 成人精品一区二区三区中文字幕 | 国产性猛交╳xxx乱大交 国产精品久久久久久无码 欧洲欧美人成视频在线 | 最近的中文字幕在线看视频 | 人人澡人人透人人爽 | 国产精品久久久久久亚洲影视内衣 | 18禁止看的免费污网站 | 精品亚洲成av人在线观看 | 亚洲综合精品香蕉久久网 | 国产国语老龄妇女a片 | 一本色道久久综合亚洲精品不卡 | 福利一区二区三区视频在线观看 | 中文字幕乱码中文乱码51精品 | 无码福利日韩神码福利片 | 蜜桃无码一区二区三区 | 国产精品久久久 | 欧美丰满少妇xxxx性 | 波多野结衣 黑人 | 性啪啪chinese东北女人 | 激情内射亚州一区二区三区爱妻 | 色婷婷av一区二区三区之红樱桃 | 久久五月精品中文字幕 | 最新国产乱人伦偷精品免费网站 | 国产欧美熟妇另类久久久 | 亚洲va欧美va天堂v国产综合 | 成 人 网 站国产免费观看 | 亚洲精品一区三区三区在线观看 | 国产人成高清在线视频99最全资源 | 7777奇米四色成人眼影 | 久久精品一区二区三区四区 | 国内精品人妻无码久久久影院 | 久久久www成人免费毛片 | av无码久久久久不卡免费网站 | 无码人妻出轨黑人中文字幕 | 国产在线精品一区二区三区直播 | 国产综合久久久久鬼色 | 国产性生大片免费观看性 | 福利一区二区三区视频在线观看 | 蜜臀av在线观看 在线欧美精品一区二区三区 | 在线精品亚洲一区二区 | 2019nv天堂香蕉在线观看 | 亚洲日韩av片在线观看 | 最近免费中文字幕中文高清百度 | 激情综合激情五月俺也去 | www成人国产高清内射 | 扒开双腿疯狂进出爽爽爽视频 | 动漫av网站免费观看 | 伊人久久婷婷五月综合97色 | 少妇无码一区二区二三区 | 久久五月精品中文字幕 | 无遮挡国产高潮视频免费观看 | 无码国产乱人伦偷精品视频 | 成年女人永久免费看片 | 亚洲欧美综合区丁香五月小说 | 久久无码人妻影院 | 日日碰狠狠躁久久躁蜜桃 | 国产精品毛多多水多 | 亚洲の无码国产の无码影院 | 欧美丰满熟妇xxxx | 蜜桃臀无码内射一区二区三区 | 国内精品九九久久久精品 | 激情内射日本一区二区三区 | 精品久久久无码人妻字幂 | 亚洲精品久久久久久一区二区 | 精品久久久无码中文字幕 | 熟妇人妻无乱码中文字幕 | 欧美丰满熟妇xxxx | 久久综合狠狠综合久久综合88 | 天天躁夜夜躁狠狠是什么心态 | 久久久久亚洲精品中文字幕 | 久久亚洲日韩精品一区二区三区 | 精品国产一区av天美传媒 | 国产国产精品人在线视 | 国产人妻久久精品二区三区老狼 | 久久无码中文字幕免费影院蜜桃 | 少妇性l交大片欧洲热妇乱xxx | 激情爆乳一区二区三区 | 丰满岳乱妇在线观看中字无码 | 美女极度色诱视频国产 | 激情内射日本一区二区三区 | 无码国产激情在线观看 | 无码午夜成人1000部免费视频 | 精品偷自拍另类在线观看 | 国产成人精品一区二区在线小狼 | 国产一精品一av一免费 | 大肉大捧一进一出好爽视频 | 精品偷自拍另类在线观看 | 老熟女重囗味hdxx69 | 国产9 9在线 | 中文 | 综合激情五月综合激情五月激情1 | 久久婷婷五月综合色国产香蕉 | 又紧又大又爽精品一区二区 | 妺妺窝人体色www婷婷 | 中文字幕av无码一区二区三区电影 | 丰腴饱满的极品熟妇 | 青草青草久热国产精品 | 伊人久久婷婷五月综合97色 | 国产一精品一av一免费 | 丰满少妇弄高潮了www | 亚洲国产欧美国产综合一区 | 狠狠噜狠狠狠狠丁香五月 | 国产女主播喷水视频在线观看 | 国产精品第一国产精品 | 亚洲狠狠色丁香婷婷综合 | 午夜精品久久久久久久 | 99久久精品无码一区二区毛片 | 鲁鲁鲁爽爽爽在线视频观看 | 在线天堂新版最新版在线8 | 国产成人人人97超碰超爽8 | 国产成人精品久久亚洲高清不卡 | 欧美日韩综合一区二区三区 | 高清国产亚洲精品自在久久 | 7777奇米四色成人眼影 | 人妻有码中文字幕在线 | 欧美怡红院免费全部视频 | 国产成人无码av在线影院 | 影音先锋中文字幕无码 | 日本熟妇人妻xxxxx人hd | 老头边吃奶边弄进去呻吟 | 日本一卡二卡不卡视频查询 | 亚洲精品中文字幕久久久久 | 激情人妻另类人妻伦 | 国产人妻精品一区二区三区不卡 | 日本va欧美va欧美va精品 | 日本熟妇乱子伦xxxx | 欧美人与物videos另类 | 中文无码伦av中文字幕 | 成人无码影片精品久久久 | 精品无码国产一区二区三区av | 黄网在线观看免费网站 | 好爽又高潮了毛片免费下载 | 大地资源网第二页免费观看 | 18精品久久久无码午夜福利 | 精品久久久久香蕉网 | 台湾无码一区二区 | а天堂中文在线官网 | 国产亚洲精品久久久久久久久动漫 | 国产精品人人爽人人做我的可爱 | 人妻互换免费中文字幕 | 久久人人97超碰a片精品 | 一本大道伊人av久久综合 | 久久久久久a亚洲欧洲av冫 | 亚洲中文字幕va福利 | 国产美女精品一区二区三区 | 正在播放东北夫妻内射 | 国产精品亚洲一区二区三区喷水 | 国产亲子乱弄免费视频 | 一本无码人妻在中文字幕免费 | 亚洲精品中文字幕久久久久 | 伊人久久大香线蕉午夜 | 久久久久成人片免费观看蜜芽 | 久久天天躁夜夜躁狠狠 | 激情五月综合色婷婷一区二区 | 激情综合激情五月俺也去 | 亚洲国产成人a精品不卡在线 | 天天躁日日躁狠狠躁免费麻豆 | 色五月五月丁香亚洲综合网 | 久久亚洲中文字幕无码 | 骚片av蜜桃精品一区 | 国产真人无遮挡作爱免费视频 | 亚洲中文字幕av在天堂 | 色诱久久久久综合网ywww | 老头边吃奶边弄进去呻吟 | av无码电影一区二区三区 | 亚洲精品中文字幕久久久久 | 捆绑白丝粉色jk震动捧喷白浆 | 国产高清不卡无码视频 | 成在人线av无码免观看麻豆 | 西西人体www44rt大胆高清 | 成在人线av无码免观看麻豆 | 少妇被粗大的猛进出69影院 | 欧美老妇交乱视频在线观看 | 欧美35页视频在线观看 | 在线视频网站www色 | 国产热a欧美热a在线视频 | 亚洲爆乳大丰满无码专区 | 67194成是人免费无码 | 99久久人妻精品免费一区 | 亚洲中文字幕无码一久久区 | 成年女人永久免费看片 | 无码av岛国片在线播放 | 亚洲天堂2017无码中文 | 国产成人无码一二三区视频 | 国产精品.xx视频.xxtv | 亚洲欧美色中文字幕在线 | 少妇人妻偷人精品无码视频 | 欧美日韩视频无码一区二区三 | 东京一本一道一二三区 | 国产在线精品一区二区三区直播 | 亚洲一区二区三区国产精华液 | 丝袜人妻一区二区三区 | 欧美刺激性大交 | 日日橹狠狠爱欧美视频 | 国语自产偷拍精品视频偷 | 女人和拘做爰正片视频 | 午夜嘿嘿嘿影院 | 妺妺窝人体色www在线小说 | 国产成人精品三级麻豆 | 国产三级久久久精品麻豆三级 | 中文字幕av无码一区二区三区电影 | 亚洲欧美国产精品专区久久 | 欧美国产日韩久久mv | 久久97精品久久久久久久不卡 | 亚洲日韩中文字幕在线播放 | a片免费视频在线观看 | 国精产品一品二品国精品69xx | 中文字幕av无码一区二区三区电影 | 欧美日韩在线亚洲综合国产人 | 久久久久人妻一区精品色欧美 | 精品aⅴ一区二区三区 | 日韩人妻系列无码专区 | 人人妻人人澡人人爽精品欧美 | 国产午夜精品一区二区三区嫩草 | 精品日本一区二区三区在线观看 | 少妇无套内谢久久久久 | 久久亚洲a片com人成 | 丰腴饱满的极品熟妇 | 天堂亚洲免费视频 | 曰韩无码二三区中文字幕 | 老子影院午夜伦不卡 | 欧美性猛交xxxx富婆 | 国产午夜亚洲精品不卡 | 中国女人内谢69xxxxxa片 | 99久久精品国产一区二区蜜芽 | 亚洲精品欧美二区三区中文字幕 | 老司机亚洲精品影院 | 国产精品第一区揄拍无码 | 亚洲一区二区三区国产精华液 | 成人影院yy111111在线观看 | 亚洲一区av无码专区在线观看 | 蜜桃视频插满18在线观看 | 欧美xxxx黑人又粗又长 | 亚洲 另类 在线 欧美 制服 | 国产真人无遮挡作爱免费视频 | 最近的中文字幕在线看视频 | 99久久人妻精品免费一区 | 大肉大捧一进一出视频出来呀 | 亚洲精品成人福利网站 | 亚洲精品中文字幕 | 欧美xxxx黑人又粗又长 | 成人无码视频免费播放 | 中文精品无码中文字幕无码专区 | 国产婷婷色一区二区三区在线 | 国产精品沙发午睡系列 | 国产亚洲美女精品久久久2020 | 国产精品第一区揄拍无码 | 国产午夜亚洲精品不卡下载 | 久久午夜无码鲁丝片秋霞 | 国产xxx69麻豆国语对白 | 国产精品嫩草久久久久 | 亚洲熟悉妇女xxx妇女av | 国精产品一区二区三区 | 激情五月综合色婷婷一区二区 | 最近免费中文字幕中文高清百度 | 黑人玩弄人妻中文在线 | 欧美 丝袜 自拍 制服 另类 | 丰腴饱满的极品熟妇 | 国产成人无码av片在线观看不卡 | 亚洲一区二区三区香蕉 | 国产成人一区二区三区在线观看 | 国产精品亚洲а∨无码播放麻豆 | 97久久国产亚洲精品超碰热 | 中文字幕久久久久人妻 | 98国产精品综合一区二区三区 | 在线天堂新版最新版在线8 | 亚洲一区二区三区含羞草 | 无套内谢的新婚少妇国语播放 | 日本一卡2卡3卡4卡无卡免费网站 国产一区二区三区影院 | av人摸人人人澡人人超碰下载 | 国产精品自产拍在线观看 | 日本一区二区三区免费播放 | 日本精品人妻无码77777 天堂一区人妻无码 | 亚洲精品久久久久中文第一幕 | 精品国产aⅴ无码一区二区 | 午夜精品久久久久久久久 | 中文字幕乱码人妻二区三区 | 国产xxx69麻豆国语对白 | 国产xxx69麻豆国语对白 | 日本精品久久久久中文字幕 | 国产xxx69麻豆国语对白 | 久久无码中文字幕免费影院蜜桃 | 国产精品第一国产精品 | 国产免费观看黄av片 | 99精品国产综合久久久久五月天 | www国产亚洲精品久久久日本 | 亚洲国产高清在线观看视频 | 国内丰满熟女出轨videos | 丝袜人妻一区二区三区 | av无码久久久久不卡免费网站 | 国产成人精品优优av | 亚洲精品中文字幕久久久久 | 高潮毛片无遮挡高清免费 | 亚洲中文无码av永久不收费 | 国产精品久久久久久久9999 | 又紧又大又爽精品一区二区 | 大地资源网第二页免费观看 | 久久久久亚洲精品中文字幕 | 亚洲伊人久久精品影院 | 亚洲中文字幕va福利 | 亚洲人亚洲人成电影网站色 | 日日麻批免费40分钟无码 | 国产精品亚洲一区二区三区喷水 | 亚洲综合色区中文字幕 | 亚洲区小说区激情区图片区 | 婷婷五月综合激情中文字幕 | 波多野结衣高清一区二区三区 | 国语自产偷拍精品视频偷 | 欧美成人免费全部网站 | 97se亚洲精品一区 | 国产精品久久久久9999小说 | 国产成人无码a区在线观看视频app | 青青草原综合久久大伊人精品 | 国产精品毛片一区二区 | 无码国产乱人伦偷精品视频 | 欧美成人高清在线播放 | 成人亚洲精品久久久久软件 | 国产在线aaa片一区二区99 | 精品人妻人人做人人爽夜夜爽 | 国产情侣作爱视频免费观看 | 国产偷抇久久精品a片69 | 久久97精品久久久久久久不卡 | 亚洲综合精品香蕉久久网 | 成熟妇人a片免费看网站 | 亚洲精品中文字幕久久久久 | 亚洲一区二区三区在线观看网站 | 国产一区二区三区四区五区加勒比 | 亚洲成av人片天堂网无码】 | 一本久道高清无码视频 | 国产亚洲日韩欧美另类第八页 | 亚洲国产成人av在线观看 | 99麻豆久久久国产精品免费 | 一本久道久久综合婷婷五月 | 久久综合激激的五月天 | 在线观看国产午夜福利片 | 最新国产乱人伦偷精品免费网站 | 在线视频网站www色 | 午夜福利电影 | 欧美日韩一区二区免费视频 | 亚洲伊人久久精品影院 | 国产成人精品三级麻豆 | 精品久久8x国产免费观看 | 伊人久久大香线蕉午夜 | 色婷婷欧美在线播放内射 | 亚洲七七久久桃花影院 | 国产97色在线 | 免 | 久久无码专区国产精品s | 中文字幕av日韩精品一区二区 | 全球成人中文在线 | 67194成是人免费无码 | 97夜夜澡人人爽人人喊中国片 | 无码帝国www无码专区色综合 | 丰满肥臀大屁股熟妇激情视频 | 午夜福利试看120秒体验区 | 午夜精品久久久久久久久 | 国产婷婷色一区二区三区在线 | 天天摸天天透天天添 | 国产色xx群视频射精 | 狠狠色噜噜狠狠狠狠7777米奇 | 图片小说视频一区二区 | 亚洲日韩一区二区三区 | 又大又紧又粉嫩18p少妇 | 久久午夜夜伦鲁鲁片无码免费 | 欧美午夜特黄aaaaaa片 | 日日干夜夜干 | 中文字幕av无码一区二区三区电影 | 伊人色综合久久天天小片 | 无遮挡啪啪摇乳动态图 | 无码播放一区二区三区 | 亚洲人成网站色7799 | 丝袜 中出 制服 人妻 美腿 | 国产麻豆精品一区二区三区v视界 | 欧美性生交活xxxxxdddd | 青青久在线视频免费观看 | 国産精品久久久久久久 | 九九综合va免费看 | 亚洲精品中文字幕乱码 | 一本久久伊人热热精品中文字幕 | 国产凸凹视频一区二区 | 亚洲欧洲日本无在线码 | 动漫av一区二区在线观看 | 无码免费一区二区三区 | 国产后入清纯学生妹 | 欧美丰满熟妇xxxx性ppx人交 | 国产亚av手机在线观看 | 图片区 小说区 区 亚洲五月 | 国产亚洲美女精品久久久2020 | 久久久av男人的天堂 | 人妻无码久久精品人妻 | 99久久人妻精品免费一区 | 精品水蜜桃久久久久久久 | 玩弄人妻少妇500系列视频 | 久久久精品人妻久久影视 | 国产亚洲精品久久久闺蜜 | 丰满人妻被黑人猛烈进入 | 国产激情一区二区三区 | 国产尤物精品视频 | 99久久亚洲精品无码毛片 | 天天做天天爱天天爽综合网 | 精品无码一区二区三区爱欲 | 国产成人亚洲综合无码 | 亚洲中文字幕无码中文字在线 | 久久亚洲精品中文字幕无男同 | 欧美国产日韩亚洲中文 | 欧美人与物videos另类 | 风流少妇按摩来高潮 | 宝宝好涨水快流出来免费视频 | 国产又爽又黄又刺激的视频 | 成在人线av无码免观看麻豆 | 国产精品久久福利网站 | 亚洲中文字幕在线观看 | 欧美xxxx黑人又粗又长 | 牲欲强的熟妇农村老妇女 | 在线精品国产一区二区三区 | 人妻尝试又大又粗久久 | 双乳奶水饱满少妇呻吟 | 亚洲成av人综合在线观看 | 欧美日韩精品 | 欧美熟妇另类久久久久久不卡 | 国产97色在线 | 免 | 亚洲高清偷拍一区二区三区 | 亚洲精品无码人妻无码 | 图片小说视频一区二区 | 性欧美熟妇videofreesex | 黑人巨大精品欧美黑寡妇 | 领导边摸边吃奶边做爽在线观看 | 精品国产麻豆免费人成网站 | 噜噜噜亚洲色成人网站 | 中文字幕无线码免费人妻 | 亚洲 欧美 激情 小说 另类 | 国产无遮挡又黄又爽又色 | 97人妻精品一区二区三区 | 黑人巨大精品欧美黑寡妇 | 76少妇精品导航 | 国产午夜亚洲精品不卡下载 | 亚洲熟妇色xxxxx欧美老妇y | 国产精品va在线观看无码 | 国产精品久免费的黄网站 | 免费无码的av片在线观看 | 蜜臀av在线观看 在线欧美精品一区二区三区 | 亚洲人成影院在线观看 | 久久久久久久女国产乱让韩 | 国产内射爽爽大片视频社区在线 | 7777奇米四色成人眼影 | 日本肉体xxxx裸交 | 久久综合九色综合欧美狠狠 | 色婷婷av一区二区三区之红樱桃 | 成人无码视频免费播放 | 日日摸夜夜摸狠狠摸婷婷 | 内射白嫩少妇超碰 | 久久99精品国产麻豆 | 午夜熟女插插xx免费视频 | 国产高清av在线播放 | 亚洲国产精品一区二区第一页 | 日韩视频 中文字幕 视频一区 | 亚洲爆乳大丰满无码专区 | 亚洲综合无码久久精品综合 | 国产凸凹视频一区二区 | 内射爽无广熟女亚洲 | 在线亚洲高清揄拍自拍一品区 | 伊人久久大香线焦av综合影院 | 女高中生第一次破苞av | 日本一区二区更新不卡 | 麻豆蜜桃av蜜臀av色欲av | 亚洲精品午夜无码电影网 | 久久久精品国产sm最大网站 | 一区二区传媒有限公司 | 少妇太爽了在线观看 | 欧美国产亚洲日韩在线二区 | 日日躁夜夜躁狠狠躁 | 最近免费中文字幕中文高清百度 | 亚洲爆乳大丰满无码专区 | 粗大的内捧猛烈进出视频 | 国产av无码专区亚洲awww | 丰腴饱满的极品熟妇 | 色 综合 欧美 亚洲 国产 | 国产国产精品人在线视 | 亚洲va欧美va天堂v国产综合 | 在线a亚洲视频播放在线观看 | 成年美女黄网站色大免费视频 | 久久成人a毛片免费观看网站 | 夜夜夜高潮夜夜爽夜夜爰爰 | 色五月丁香五月综合五月 | 成 人影片 免费观看 | 东北女人啪啪对白 | 免费无码午夜福利片69 | 又色又爽又黄的美女裸体网站 | 亚洲欧美综合区丁香五月小说 | 久久久久久久人妻无码中文字幕爆 | 18禁黄网站男男禁片免费观看 | 欧美日韩色另类综合 | 四虎永久在线精品免费网址 | 狂野欧美性猛交免费视频 | 欧美国产日产一区二区 | 日韩成人一区二区三区在线观看 | 麻豆精品国产精华精华液好用吗 | 国产莉萝无码av在线播放 | 精品无码av一区二区三区 | 亚洲熟妇色xxxxx亚洲 | 亚洲国产精品毛片av不卡在线 | 荫蒂被男人添的好舒服爽免费视频 | 免费无码的av片在线观看 | 国产内射爽爽大片视频社区在线 | 国产成人一区二区三区在线观看 | 性色av无码免费一区二区三区 | 大肉大捧一进一出视频出来呀 | 97人妻精品一区二区三区 | 婷婷色婷婷开心五月四房播播 | 国产精品a成v人在线播放 | 丝袜足控一区二区三区 | 中文精品无码中文字幕无码专区 | 女人被男人爽到呻吟的视频 | 久久精品成人欧美大片 | 又大又紧又粉嫩18p少妇 | 国产性猛交╳xxx乱大交 国产精品久久久久久无码 欧洲欧美人成视频在线 | 久久久久成人片免费观看蜜芽 | 欧美第一黄网免费网站 | 国产一区二区三区精品视频 | 亚洲精品一区二区三区四区五区 | 国产午夜视频在线观看 | 国语自产偷拍精品视频偷 | 乌克兰少妇xxxx做受 | 日日摸夜夜摸狠狠摸婷婷 | 在线观看国产一区二区三区 | 无码精品国产va在线观看dvd | 女人被爽到呻吟gif动态图视看 | 波多野结衣 黑人 | 18禁黄网站男男禁片免费观看 | 国产口爆吞精在线视频 | 亚洲欧美日韩成人高清在线一区 | 99久久精品日本一区二区免费 | 国产片av国语在线观看 | 内射老妇bbwx0c0ck | 日本又色又爽又黄的a片18禁 | 精品无码成人片一区二区98 | 国产欧美亚洲精品a | 日产精品99久久久久久 | 色诱久久久久综合网ywww | 男人和女人高潮免费网站 | 亚洲欧美日韩国产精品一区二区 | 国产精品无码mv在线观看 | 人妻少妇被猛烈进入中文字幕 | 天天燥日日燥 | 成人无码精品一区二区三区 | 日欧一片内射va在线影院 | 妺妺窝人体色www在线小说 | 水蜜桃亚洲一二三四在线 | 亚洲人成网站在线播放942 | 人妻无码αv中文字幕久久琪琪布 | 日韩 欧美 动漫 国产 制服 | 真人与拘做受免费视频一 | 99久久婷婷国产综合精品青草免费 | 精品一区二区不卡无码av | 野狼第一精品社区 | 狠狠色色综合网站 | 桃花色综合影院 | 亚洲国产综合无码一区 | 国产美女极度色诱视频www | 青春草在线视频免费观看 | 狠狠色欧美亚洲狠狠色www | 欧美日韩一区二区综合 | 亚洲色无码一区二区三区 | 无码人妻精品一区二区三区下载 | 亚洲综合无码一区二区三区 | 国产精品多人p群无码 | 图片小说视频一区二区 | 天下第一社区视频www日本 | 激情爆乳一区二区三区 | 欧美大屁股xxxxhd黑色 | 精品人妻av区 | 国产超级va在线观看视频 | 亚洲色欲色欲欲www在线 | 熟女少妇在线视频播放 | 国内精品人妻无码久久久影院 | 成人综合网亚洲伊人 | 国产精品亚洲五月天高清 | 激情五月综合色婷婷一区二区 | 国精品人妻无码一区二区三区蜜柚 | 国产精品18久久久久久麻辣 | 精品久久久久香蕉网 | 呦交小u女精品视频 | 狂野欧美性猛xxxx乱大交 | 18无码粉嫩小泬无套在线观看 | 我要看www免费看插插视频 | 国产色视频一区二区三区 | 亚洲一区二区三区在线观看网站 | 亚洲国产av精品一区二区蜜芽 | 欧美一区二区三区 | 午夜肉伦伦影院 | 亚洲无人区午夜福利码高清完整版 | 久久亚洲精品中文字幕无男同 | 国产色精品久久人妻 | 国精产品一品二品国精品69xx | 无遮挡啪啪摇乳动态图 | 精品欧美一区二区三区久久久 | 国产精品久久久av久久久 | 国产真实夫妇视频 | 99久久人妻精品免费一区 | 国产美女极度色诱视频www | 久久综合香蕉国产蜜臀av | 在教室伦流澡到高潮hnp视频 | 少妇邻居内射在线 | 色综合久久久无码网中文 | 精品亚洲韩国一区二区三区 | 亚洲欧洲无卡二区视頻 | 国产精品爱久久久久久久 | 成 人影片 免费观看 | av香港经典三级级 在线 | 久久人人97超碰a片精品 | 夜夜高潮次次欢爽av女 | 久久伊人色av天堂九九小黄鸭 | 色综合久久久久综合一本到桃花网 | 亚洲国产一区二区三区在线观看 | 日韩亚洲欧美精品综合 | 欧美日韩视频无码一区二区三 | 精品偷自拍另类在线观看 | 妺妺窝人体色www婷婷 | 国产av无码专区亚洲a∨毛片 | 精品人妻av区 | 亚洲天堂2017无码 | 婷婷综合久久中文字幕蜜桃三电影 | 67194成是人免费无码 | 麻豆人妻少妇精品无码专区 | 纯爱无遮挡h肉动漫在线播放 | 国内精品一区二区三区不卡 | 国产 浪潮av性色四虎 | 国产乱人伦偷精品视频 | 国产农村妇女aaaaa视频 撕开奶罩揉吮奶头视频 | 中文字幕日产无线码一区 | 国产两女互慰高潮视频在线观看 | 欧美熟妇另类久久久久久不卡 | 中文字幕 亚洲精品 第1页 | 九一九色国产 |