NIPS 2016上22篇论文的实现汇集
日前,LightOn CEO 兼聯合創始人 Igor Carron 在其博客上放出了其收集到的 NIPS 2016 論文的實現(一共 22 個)。他寫道:「在 Reddit 上,peterkuharvarduk 決定編譯所有來自 NIPS 2016 的可用實現,我很高興他使用了『實現( implementation)』這個詞,因為這讓我可以快速搜索到這些項目。」除了 peterkuharvarduk 的推薦,這里的項目還包括 Reddit 其他用戶和 Carron 額外添加的一些新公布的實現。最終他還重點推薦了 GitXiv:http://www.gitxiv.com 。另外,在本文后面還附帶了機器之心關于 NIPS 2016 的文章列表,千萬不要錯過。
1. 使用快速權重關注最近的過去(Using Fast Weights to Attend to the Recent Past)
論文:https://arxiv.org/abs/1610.06258
GitHub:https://github.com/ajarai/fast-weights
2. 通過梯度下降來學習通過梯度下降的學習(Learning to learn by gradient descent by gradient descent)
論文:https://arxiv.org/abs/1606.04474
GitHub:https://github.com/deepmind/learning-to-learn
3. R-FCN:通過基于區域的全卷積網絡的目標檢測(R-FCN: Object Detection via Region-based Fully Convolutional Networks)
論文:https://arxiv.org/abs/1605.06409
GitHub:https://github.com/Orpine/py-R-FCN
4. 用于 k-均值的快速和可證明的 Good Seedings(Fast and Provably Good Seedings for k-Means)
論文:https://las.inf.ethz.ch/files/bachem16fast.pdf.
GitHub:https://github.com/obachem/kmc2
5. 如何訓練生成對抗網絡(How to Train a GAN)
GitHub:https://github.com/soumith/ganhacks
6. Phased LSTM:為長的或基于事件的序列加速循環網絡訓練(Phased LSTM: Accelerating Recurrent Network Training for Long or Event-based Sequences)
論文:https://arxiv.org/abs/1610.09513
GitHub:?https://github.com/dannyneil/public_plstm
7. 生成對抗式模仿學習(Generative Adversarial Imitation Learning)
論文:https://arxiv.org/abs/1606.03476
GitHub:https://github.com/openai/imitation
8. 對抗式多類分類:一個風險最小化的角度(Adversarial Multiclass Classification: A Risk Minimization Perspective)
論文:https://www.cs.uic.edu/~rfathony/pdf/fathony2016adversarial.pdf
GitHub:https://github.com/rizalzaf/adversarial-multiclass
9. 通過視頻預測的用于物理交互的無監督學習(Unsupervised Learning for Physical Interaction through Video Prediction)
論文:https://arxiv.org/abs/1605.07157
GitHub:?https://github.com/tensorflow/models/tree/master/video_prediction
10.權重規范化:一種加速深度神經網絡訓練的簡單重新參數化( Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks)
論文:https://arxiv.org/abs/1602.07868
GitHub:https://github.com/openai/weightnorm
11. 全容量整體循環神經網絡(Full-Capacity Unitary Recurrent Neural Networks)
論文:https://arxiv.org/abs/1611.00035
GitHub:https://github.com/stwisdom/urnn
12. 帶有隨機層的序列神經模型(Sequential Neural Models with Stochastic Layers)
論文:https://arxiv.org/pdf/1605.07571.pdf
GitHub:https://github.com/marcofraccaro/srnn
13. 帶有快速局部化譜過濾的圖上的卷積神經網絡(Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering)
論文:https://arxiv.org/abs/1606.09375
GitHub:https://github.com/mdeff/cnn_graph
14. Interpretable Distribution Features with Maximum Testing Power
論文:https://papers.nips.cc/paper/6148-interpretable-distribution-features-with-maximum-testing-power.pdf
GitHub:https://github.com/wittawatj/interpretable-test/
15. 使用神經網絡組成圖模型,用于結構化表征和快速推理(Composing graphical models with neural networks for structured representations and fast inference )
論文:https://arxiv.org/abs/1603.06277
GitHub:https://github.com/mattjj/svae
16. 使用張量網絡的監督學習(Supervised Learning with Tensor Networks)
論文:https://arxiv.org/abs/1605.05775
GitHub:https://github.com/emstoudenmire/TNML
17. 使用貝葉斯條件密度估計的模擬模型的快速無ε推理(Fast ε-free Inference of Simulation Models with Bayesian Conditional Density Estimation)
論文:https://arxiv.org/abs/1605.06376
GitHub:https://github.com/gpapamak/epsilon_free_inference
18. 用于概率程序的貝葉斯優化(Bayesian Optimization for Probabilistic Programs)
論文:http://www.robots.ox.ac.uk/~twgr/assets/pdf/rainforth2016BOPP.pdf
GitHub:https://github.com/probprog/bopp
19. PVANet:用于實施目標檢測的輕權重深度神經網絡(PVANet: Lightweight Deep Neural Networks for Real-time Object Detection)
論文:https://arxiv.org/abs/1611.08588
GitHub:https://github.com/sanghoon/pva-faster-rcnn
20. 數據編程:快速創建大訓練集(Data Programming: Creating Large Training Sets Quickly)
論文:https://arxiv.org/abs/1605.07723
代碼:?snorkel.stanford.edu
21. 用于架構學習的卷積神經結構(Convolutional Neural Fabrics for Architecture Learning)
論文:https://arxiv.org/pdf/1606.02492.pdf
GitHub:https://github.com/shreyassaxena/convolutional-neural-fabrics
22. 價值迭代網絡(Value Iteration Networks)
論文:https://arxiv.org/abs/1602.02867
TensorFlow 實現:https://github.com/TheAbhiKumar/tensorflow-value-iteration-networks
? ? ??原作者的 Theano 實現:https://github.com/avivt/VIN
總結
以上是生活随笔為你收集整理的NIPS 2016上22篇论文的实现汇集的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 战争雷霆9月3日抗日胜利纪念日活动
- 下一篇: 文远+威侯相约S2赏金令 兼资文武威震江