python保存模型 特征_Pytorch提取模型特征向量保存至csv的例子
Pytorch提取模型特征向量
# -*- coding: utf-8 -*-
"""
dj
"""
import torch
import torch.nn as nn
import os
from torchvision import models, transforms
from torch.autograd import Variable
import numpy as np
from PIL import Image
import torchvision.models as models
import pretrainedmodels
import pandas as pd
class FCViewer(nn.Module):
def forward(self, x):
return x.view(x.size(0), -1)
class M(nn.Module):
def __init__(self, backbone1, drop, pretrained=True):
super(M,self).__init__()
if pretrained:
img_model = pretrainedmodels.__dict__[backbone1](num_classes=1000, pretrained='imagenet')
else:
img_model = pretrainedmodels.__dict__[backbone1](num_classes=1000, pretrained=None)
self.img_encoder = list(img_model.children())[:-2]
self.img_encoder.append(nn.AdaptiveAvgPool2d(1))
self.img_encoder = nn.Sequential(*self.img_encoder)
if drop > 0:
self.img_fc = nn.Sequential(FCViewer())
else:
self.img_fc = nn.Sequential(
FCViewer())
def forward(self, x_img):
x_img = self.img_encoder(x_img)
x_img = self.img_fc(x_img)
return x_img
model1=M('resnet18',0,pretrained=True)
features_dir = '/home/cc/Desktop/features'
transform1 = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor()])
file_path='/home/cc/Desktop/picture'
names = os.listdir(file_path)
print(names)
for name in names:
pic=file_path+'/'+name
img = Image.open(pic)
img1 = transform1(img)
x = Variable(torch.unsqueeze(img1, dim=0).float(), requires_grad=False)
y = model1(x)
y = y.data.numpy()
y = y.tolist()
#print(y)
test=pd.DataFrame(data=y)
#print(test)
test.to_csv("/home/cc/Desktop/features/3.csv",mode='a+',index=None,header=None)
jiazaixunlianhaodemoxing
import torch
import torch.nn.functional as F
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import argparse
class ResidualBlock(nn.Module):
def __init__(self, inchannel, outchannel, stride=1):
super(ResidualBlock, self).__init__()
self.left = nn.Sequential(
nn.Conv2d(inchannel, outchannel, kernel_size=3, stride=stride, padding=1, bias=False),
nn.BatchNorm2d(outchannel),
nn.ReLU(inplace=True),
nn.Conv2d(outchannel, outchannel, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(outchannel)
)
self.shortcut = nn.Sequential()
if stride != 1 or inchannel != outchannel:
self.shortcut = nn.Sequential(
nn.Conv2d(inchannel, outchannel, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(outchannel)
)
def forward(self, x):
out = self.left(x)
out += self.shortcut(x)
out = F.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, ResidualBlock, num_classes=10):
super(ResNet, self).__init__()
self.inchannel = 64
self.conv1 = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(),
)
self.layer1 = self.make_layer(ResidualBlock, 64, 2, stride=1)
self.layer2 = self.make_layer(ResidualBlock, 128, 2, stride=2)
self.layer3 = self.make_layer(ResidualBlock, 256, 2, stride=2)
self.layer4 = self.make_layer(ResidualBlock, 512, 2, stride=2)
self.fc = nn.Linear(512, num_classes)
def make_layer(self, block, channels, num_blocks, stride):
strides = [stride] + [1] * (num_blocks - 1) #strides=[1,1]
layers = []
for stride in strides:
layers.append(block(self.inchannel, channels, stride))
self.inchannel = channels
return nn.Sequential(*layers)
def forward(self, x):
out = self.conv1(x)
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = F.avg_pool2d(out, 4)
out = out.view(out.size(0), -1)
out = self.fc(out)
return out
def ResNet18():
return ResNet(ResidualBlock)
import os
from torchvision import models, transforms
from torch.autograd import Variable
import numpy as np
from PIL import Image
import torchvision.models as models
import pretrainedmodels
import pandas as pd
class FCViewer(nn.Module):
def forward(self, x):
return x.view(x.size(0), -1)
class M(nn.Module):
def __init__(self, backbone1, drop, pretrained=True):
super(M,self).__init__()
if pretrained:
img_model = pretrainedmodels.__dict__[backbone1](num_classes=1000, pretrained='imagenet')
else:
img_model = ResNet18()
we='/home/cc/Desktop/dj/model1/incption--7'
# 模型定義-ResNet
#net = ResNet18().to(device)
img_model.load_state_dict(torch.load(we))#diaoyong
self.img_encoder = list(img_model.children())[:-2]
self.img_encoder.append(nn.AdaptiveAvgPool2d(1))
self.img_encoder = nn.Sequential(*self.img_encoder)
if drop > 0:
self.img_fc = nn.Sequential(FCViewer())
else:
self.img_fc = nn.Sequential(
FCViewer())
def forward(self, x_img):
x_img = self.img_encoder(x_img)
x_img = self.img_fc(x_img)
return x_img
model1=M('resnet18',0,pretrained=None)
features_dir = '/home/cc/Desktop/features'
transform1 = transforms.Compose([
transforms.Resize(56),
transforms.CenterCrop(32),
transforms.ToTensor()])
file_path='/home/cc/Desktop/picture'
names = os.listdir(file_path)
print(names)
for name in names:
pic=file_path+'/'+name
img = Image.open(pic)
img1 = transform1(img)
x = Variable(torch.unsqueeze(img1, dim=0).float(), requires_grad=False)
y = model1(x)
y = y.data.numpy()
y = y.tolist()
#print(y)
test=pd.DataFrame(data=y)
#print(test)
test.to_csv("/home/cc/Desktop/features/3.csv",mode='a+',index=None,header=None)
以上這篇Pytorch提取模型特征向量保存至csv的例子就是小編分享給大家的全部內(nèi)容了,希望能給大家一個參考,也希望大家多多支持python博客。
創(chuàng)作挑戰(zhàn)賽新人創(chuàng)作獎勵來咯,堅持創(chuàng)作打卡瓜分現(xiàn)金大獎總結(jié)
以上是生活随笔為你收集整理的python保存模型 特征_Pytorch提取模型特征向量保存至csv的例子的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: Go语言实战抽奖系统
- 下一篇: vertica常用sql语句总结