P3911 最小公倍数之和 (atcoder C - LCMs)(反演)
P3911 最小公倍數(shù)之和
推式子
∑i=1n∑j=1nlcm(ai,aj)下面的n=max(ai),ci為i在原數(shù)組中出現(xiàn)的次數(shù)∑i=1n∑j=1nijgcd(ij)cicj=∑d=1n1d∑i=1n∑j=1nijcicj(gcd(i,j)==d)=∑d=1nd∑i=1nd∑j=1ndijcidcjd∑k∣gcd(i,j)μ(k)=∑d=1nd∑k=1ndμ(k)k2∑i=1nkd∑j=1nkdijcikdcjkd=∑t=1nt(∑i=1nticit)2∑d∣tdμ(d)\sum_{i = 1} ^{n} \sum_{j = 1} ^ {n} lcm(a_i, a_j) \\ 下面的n = max(a_i), c_i 為i在原數(shù)組中出現(xiàn)的次數(shù)\\ \sum_{i = 1} ^{n} \sum_{j = 1} ^{n} \frac{ij}{gcd(ij)} c_ic_j\\ = \sum_{d = 1} ^{n} \frac{1}ze8trgl8bvbq\sum_{i = 1} ^{n} \sum_{j = 1} ^{n} ij c_ic_j(gcd(i, j) == d)\\ = \sum_{d = 1} ^{n} d \sum_{i = 1} ^{\frac{n}ze8trgl8bvbq} \sum_{j = 1} ^{\frac{n}ze8trgl8bvbq} ijc_{id}c_{jd} \sum_{k \mid gcd(i, j)} \mu(k)\\ = \sum_{d = 1} ^{n} d \sum_{k = 1} ^{\frac{n}ze8trgl8bvbq} \mu(k) k ^ 2 \sum_{i = 1} ^{\frac{n}{kd}} \sum_{j = 1} ^{\frac{n}{kd}}ijc_{ikd}c_{jkd}\\ = \sum_{t = 1} ^{n}t \left(\sum_{i = 1} ^{\frac{n}{t}}ic_{it}\right) ^ 2 \sum_{d \mid t} d \mu(d)\\ i=1∑n?j=1∑n?lcm(ai?,aj?)下面的n=max(ai?),ci?為i在原數(shù)組中出現(xiàn)的次數(shù)i=1∑n?j=1∑n?gcd(ij)ij?ci?cj?=d=1∑n?d1?i=1∑n?j=1∑n?ijci?cj?(gcd(i,j)==d)=d=1∑n?di=1∑dn??j=1∑dn??ijcid?cjd?k∣gcd(i,j)∑?μ(k)=d=1∑n?dk=1∑dn??μ(k)k2i=1∑kdn??j=1∑kdn??ijcikd?cjkd?=t=1∑n?t???i=1∑tn??icit????2d∣t∑?dμ(d)
代碼
/*Author : lifehappy */ #pragma GCC optimize(2) #pragma GCC optimize(3) #include <bits/stdc++.h>#define mp make_pair #define pb push_back #define endl '\n' #define mid (l + r >> 1) #define lson rt << 1, l, mid #define rson rt << 1 | 1, mid + 1, r #define ls rt << 1 #define rs rt << 1 | 1using namespace std;typedef long long ll; typedef unsigned long long ull; typedef pair<int, int> pii;const double pi = acos(-1.0); const double eps = 1e-7; const int inf = 0x3f3f3f3f;inline ll read() {ll f = 1, x = 0;char c = getchar();while(c < '0' || c > '9') {if(c == '-') f = -1;c = getchar();}while(c >= '0' && c <= '9') {x = (x << 1) + (x << 3) + (c ^ 48);c = getchar();}return f * x; }const int N = 5e4 + 10;ll sum[N], c[N], n, m;bool st[N];int prime[N], mu[N], cnt;void init() {mu[1] = 1;for(int i = 2; i < N; i++) {if(!st[i]) {prime[cnt++] = i;mu[i] = -1;}for(int j = 0; j < cnt && i * prime[j] < N; j++) {st[i * prime[j]] = 1;if(i % prime[j] == 0) break;mu[i * prime[j]] = -mu[i];}}for(int i = 1; i < N; i++) {for(int j = i; j < N; j += i) {sum[j] += i * mu[i];}} }int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);init();n = read(), m = 0;for(int i = 1; i <= n; i++) {ll x = read();m = max(x, m);c[x]++;}ll ans = 0;for(ll t = 1; t <= m; t++) {ll res = 0;for(ll i = 1; i <= m / t; i++) {res += 1ll * i * c[i * t];}ans += t * res * res * sum[t];}printf("%lld\n", ans);return 0; }C - LCMs
推式子
∑i=1n?1∑j=i+1nlcm(ai,aj)=∑i=1n∑j=1nlcm(ai,aj)?∑i=1nai2求∑i=1n∑j=1nlcm(ai,aj)下面的n=max(ai),ci為i在原數(shù)組中出現(xiàn)的次數(shù)∑i=1n∑j=1nijgcd(ij)cicj=∑d=1n1d∑i=1n∑j=1nijcicj(gcd(i,j)==d)=∑d=1nd∑i=1nd∑j=1ndijcidcjd∑k∣gcd(i,j)μ(k)=∑d=1nd∑k=1ndμ(k)k2∑i=1nkd∑j=1nkdijcikdcjkd=∑t=1nt(∑i=1nticit)2∑d∣tdμ(d)\sum_{i = 1} ^{n - 1} \sum_{j = i + 1} ^{n} lcm(a_i, a_j)\\ = \frac{\sum_{i = 1} ^{n} \sum_{j = 1} ^{n} lcm(a_i, a_j) - \sum_{i = 1} ^{n} a_i} {2}\\ 求\sum_{i = 1} ^{n} \sum_{j = 1} ^ {n} lcm(a_i, a_j) \\ 下面的n = max(a_i), c_i 為i在原數(shù)組中出現(xiàn)的次數(shù)\\ \sum_{i = 1} ^{n} \sum_{j = 1} ^{n} \frac{ij}{gcd(ij)} c_ic_j\\ = \sum_{d = 1} ^{n} \frac{1}ze8trgl8bvbq\sum_{i = 1} ^{n} \sum_{j = 1} ^{n} ij c_ic_j(gcd(i, j) == d)\\ = \sum_{d = 1} ^{n} d \sum_{i = 1} ^{\frac{n}ze8trgl8bvbq} \sum_{j = 1} ^{\frac{n}ze8trgl8bvbq} ijc_{id}c_{jd} \sum_{k \mid gcd(i, j)} \mu(k)\\ = \sum_{d = 1} ^{n} d \sum_{k = 1} ^{\frac{n}ze8trgl8bvbq} \mu(k) k ^ 2 \sum_{i = 1} ^{\frac{n}{kd}} \sum_{j = 1} ^{\frac{n}{kd}}ijc_{ikd}c_{jkd}\\ = \sum_{t = 1} ^{n}t \left(\sum_{i = 1} ^{\frac{n}{t}}ic_{it}\right) ^ 2 \sum_{d \mid t} d \mu(d)\\ i=1∑n?1?j=i+1∑n?lcm(ai?,aj?)=2∑i=1n?∑j=1n?lcm(ai?,aj?)?∑i=1n?ai??求i=1∑n?j=1∑n?lcm(ai?,aj?)下面的n=max(ai?),ci?為i在原數(shù)組中出現(xiàn)的次數(shù)i=1∑n?j=1∑n?gcd(ij)ij?ci?cj?=d=1∑n?d1?i=1∑n?j=1∑n?ijci?cj?(gcd(i,j)==d)=d=1∑n?di=1∑dn??j=1∑dn??ijcid?cjd?k∣gcd(i,j)∑?μ(k)=d=1∑n?dk=1∑dn??μ(k)k2i=1∑kdn??j=1∑kdn??ijcikd?cjkd?=t=1∑n?t???i=1∑tn??icit????2d∣t∑?dμ(d)
代碼
/*Author : lifehappy */ #pragma GCC optimize(2) #pragma GCC optimize(3) #include <bits/stdc++.h>#define mp make_pair #define pb push_back #define endl '\n' #define mid (l + r >> 1) #define lson rt << 1, l, mid #define rson rt << 1 | 1, mid + 1, r #define ls rt << 1 #define rs rt << 1 | 1using namespace std;typedef long long ll; typedef unsigned long long ull; typedef pair<int, int> pii;const double pi = acos(-1.0); const double eps = 1e-7; const int inf = 0x3f3f3f3f;inline ll read() {ll f = 1, x = 0;char c = getchar();while(c < '0' || c > '9') {if(c == '-') f = -1;c = getchar();}while(c >= '0' && c <= '9') {x = (x << 1) + (x << 3) + (c ^ 48);c = getchar();}return f * x; }const int N = 1e6 + 10, mod = 998244353;ll sum[N], c[N], n, m, all;bool st[N];int prime[N], mu[N], cnt;ll quick_pow(ll a, ll n, ll mod) {ll ans = 1;while(n) {if(n & 1) ans = ans * a % mod;n >>= 1;a = a * a % mod;}return ans; }void init() {mu[1] = 1;for(int i = 2; i < N; i++) {if(!st[i]) {prime[cnt++] = i;mu[i] = -1;}for(int j = 0; j < cnt && i * prime[j] < N; j++) {st[i * prime[j]] = 1;if(i % prime[j] == 0) break;mu[i * prime[j]] = -mu[i];}}for(int i = 1; i < N; i++) {for(int j = i; j < N; j += i) {sum[j] = (sum[j] + i * mu[i] % mod + mod) % mod;}} }int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);init();n = read(), m = 0;for(int i = 1; i <= n; i++) {ll x = read();all = (all + x) % mod;m = max(x, m);c[x]++;}ll ans = 0;for(ll t = 1; t <= m; t++) {ll res = 0;for(ll i = 1; i <= m / t; i++) {res = (res + 1ll * i * c[i * t] % mod) % mod;}ans = (ans + t * res % mod * res % mod * sum[t] % mod) % mod;}printf("%lld\n", ((ans - all) * quick_pow(2, mod - 2, mod) % mod + mod) % mod);return 0; }總結(jié)
以上是生活随笔為你收集整理的P3911 最小公倍数之和 (atcoder C - LCMs)(反演)的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 科大星云诗社动态20210124
- 下一篇: gitee使用教程(超详解)