乘法逆元_
乘法逆元
定義:若a?x≡1(modb)a*x \equiv 1 (\mod b)a?x≡1(modb),則xxx為aaa在modb\mod bmodb下的逆元
作用:求bamodp\frac{a} \mod pab?modp,的1a\frac{1}{a}a1?在modp\mod pmodp下的整數取值
求法:
擴展歐幾里得:
前提:a⊥pa\perp pa⊥p(因為擴展歐幾里得要求方程ax+by=1ax+by=1ax+by=1的a⊥ba \perp ba⊥b)
做法:若是要求a?x≡1(modb)a*x \equiv 1(\mod b)a?x≡1(modb),其實就是要求ax+by=1ax+by=1ax+by=1的xxx的取值,擴展歐幾里得求解即可
代碼實現:
#include<cmath> #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #define int long long using namespace std;void read(int &sum) {sum=0;char last='w',ch=getchar();while (ch<'0' || ch>'9') last=ch,ch=getchar();while (ch>='0' && ch<='9') sum=sum*10+ch-'0',ch=getchar();if (last=='-') sum=-sum; } int gcd(int a,int b) {if (a%b==0) return b;else return gcd(b,a%b); } void EX_gcd(int a,int b,int &x,int &y) {if (b==0) x=1,y=0;else EX_gcd(b,a%b,y,x),y-=a/b*x; } int a,b,c; signed main() { // freopen("M.in","r",stdin); // freopen("M.out","w",stdout);read(a),read(b),c=1;int t=gcd(a,b);a/=t,b/=t;int x,y;EX_gcd(a,b,x,y);x*=c/t,y*=c/t;printf("%lld",(x+b*100)%b); // fclose(stdin);fclose(stdout);return 0; }快速冪
前提:ppp是質數,且a⊥pa \perp pa⊥p(因為費馬小定理ap?1≡1(modp)a^{p-1}\equiv1(\mod p)ap?1≡1(modp),中ppp是質數,且a⊥a \perpa⊥)
做法:∵a?x≡1(modp)\because a*x \equiv 1 (\mod p)∵a?x≡1(modp)
由費馬小定理得,∴a?x≡ap?1(modp)\therefore a*x \equiv a^{p-1} (\mod p)∴a?x≡ap?1(modp)
兩邊同時除aaa得,∴x≡ap?2(modp)\therefore x \equiv a^{p-2} (\mod p)∴x≡ap?2(modp)
最后快速冪加(mod)(\mod )(mod)結束
代碼實現:
#include<cmath> #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #define int long long using namespace std;void read(int &sum) {sum=0;char last='w',ch=getchar();while (ch<'0' || ch>'9') last=ch,ch=getchar();while (ch>='0' && ch<='9') sum=sum*10+ch-'0',ch=getchar();if (last=='-') sum=-sum; } int a,p; int sortm(int x,int k) {if (k==0) return 1;if (k==1) return x%p;int t=sortm(x,k/2)%p;if (k%2==0) return t*t%p;else return t*t%p*x%p; } signed main() { // freopen("M.in","r",stdin); // freopen("M.out","w",stdout);read(a),read(p);int ans=sortm(a,p-2);printf("%lld",ans); // fclose(stdin);fclose(stdout);return 0; }線性算法
作用:求111~nnn的所有數的逆元
做法:首先我們知道111的逆元為111,然后設要求的為iii,再設p=i?k+rp=i*k+rp=i?k+r,把這個式子放在(modp)(\mod p)(modp)下,得i?k+r≡0(modp)i*k+r \equiv 0(\mod p)i?k+r≡0(modp),兩邊同時乘以i?1,r?1i^{-1},r^{-1}i?1,r?1,得k?r?1+i?1≡0(modp)k*r^{-1}+i^{-1} \equiv 0(\mod p)k?r?1+i?1≡0(modp),所以i?1≡?k?r?1(modp)i^{-1}\equiv -k*r^{-1}(\mod p)i?1≡?k?r?1(modp),所以i?1≡??pi??(pmodi)?1(modp)i^{-1} \equiv -\lfloor \frac{p}{i} \rfloor*(p \mod i)^{-1} (\mod p)i?1≡??ip???(pmodi)?1(modp),這樣我們就可以通過前面的逆元求出當前逆元。
代碼實現:
#include<bits/stdc++.h> #define int long long using namespace std; int n,p; int inv[6*1000000]; signed main() {cin >> n >> p;inv[1]=1;for (int i=2;i<=n;i++)inv[i]=(p-p/i)*inv[p%i]%p;for (int i=1;i<=n;i++)printf("%lld\n",inv[i]); }階乘逆元
作用:求1!,2!...n!1!,2!...n!1!,2!...n!的逆元
做法:(inv[i]=1i)(inv[i]=\frac{1}{i})(inv[i]=i1?)因為inv[i+1]=1(i+1)!inv[i+1]=\frac{1}{(i+1)!}inv[i+1]=(i+1)!1?,所以inv[i+1]?(i+1)=1i!inv[i+1]*(i+1)=\frac{1}{i!}inv[i+1]?(i+1)=i!1?,所以inv[i]=inv[i+1]?(i+1)inv[i]=inv[i+1]*(i+1)inv[i]=inv[i+1]?(i+1),這樣我們就可以O(n)O(n)O(n)求解了
代碼實現
#include<cmath> #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #define int long long using namespace std;void read(int &sum) {sum=0;char last='w',ch=getchar();while (ch<'0' || ch>'9') last=ch,ch=getchar();while (ch>='0' && ch<='9') sum=sum*10+ch-'0',ch=getchar();if (last=='-') sum=-sum; } void EX_gcd(int a,int b,int &x,int &y) {if (b==0) x=1,y=0;else EX_gcd(b,a%b,y,x),y-=a/b*x; } int n,p; int inv[3*1000001]; signed main() { // freopen("M.in","r",stdin); // freopen("M.out","w",stdout);read(n);read(p);inv[n]=1;for (int i=1;i<=n;i++) inv[n]*=i,inv[n]%=p;int x,y;EX_gcd(inv[n],p,x,y);inv[n]=x;for (int i=n-1;i>=1;i--)inv[i]=inv[i+1]*(i+1)%p;for (int i=1;i<=n;i++)printf("%lld ",(inv[i]+p*100)%p); // fclose(stdin);fclose(stdout);return 0; }Tags:乘法逆元 數論 信息學
總結
- 上一篇: DDNS 服务搭建
- 下一篇: 通过HTTP响应头让浏览器自动刷新