高等数学(下)知识点总结
高等數(shù)學(xué)(下)知識點總結(jié)?
首先我們學(xué)習(xí)了空間解析幾何。平面的三種方程適用于不同類型的題目:
類比平面解析幾何,不難得出如下的夾角與距離的概念:
研究完平面,我們研究直線。直線也有下面三種方程:
計算夾角的方法如下:
用好過直線的平面束,可以解決很多問題:
研究完直線,我們研究曲線。曲線有如下形式的一般方程:
曲線也可用參數(shù)方程表達:
我們還有投影的概念:
研究空間解析幾何,一定程度上為多元函數(shù)的研究提供了基礎(chǔ),多元函數(shù)的最基本概念請同學(xué)們牢記:
隨后我們研究了偏導(dǎo)數(shù):
以及高階偏導(dǎo)數(shù):
用好全微分的概念,可以處理很多計算偏導(dǎo)數(shù)的題目:
研究完最簡單的偏導(dǎo)數(shù),我們想研究復(fù)合函數(shù)的偏導(dǎo)數(shù)。由于復(fù)合方法多種多樣,也有如下兩種不同的情形:
隱函數(shù)定理壓軸登場!一個方程的情形,計算偏導(dǎo)數(shù)的公式如下:
方程組聯(lián)立的情形下,我們引入了雅可比行列式的概念,方法如下。乍一看公式似乎很復(fù)雜,實際就是解一個線性方程組~
除了在坐標軸方向有偏導(dǎo)數(shù),我們在任意方向都可以定義方向?qū)?shù)。自然要用到梯度的概念:
多元函數(shù)微分學(xué)反過來對第一章的空間解析幾何提供了方法:
在沒有限制條件的情況下,我們可以借助偏導(dǎo)數(shù)求出多元函數(shù)的極值:
接觸過中學(xué)數(shù)學(xué)競賽的同學(xué)會被中學(xué)數(shù)學(xué)競賽那細微的放縮以及“先猜后證”弄得暈頭轉(zhuǎn)向,而這里的拉格朗日乘子法,讓你秒殺多元條件極值問題!
上學(xué)期同學(xué)們學(xué)習(xí)了定積分、反常積分,不過有的特定的反常積分是無法用傳統(tǒng)方法解出來的。這就要借助我們的重積分了。類比定積分,二重積分有以下兩個性質(zhì):
如何計算重積分,可以說是高數(shù)中的關(guān)鍵部分。一般來說,我們把積分區(qū)域劃分成如下兩種區(qū)域,再進行求解,實際上,我們還是在做定積分。必要的時候,還要交換積分次序。
三重積分最基本的計算方法有兩種,我們的思想就是把三重積分轉(zhuǎn)化為二重積分和定積分,這兩種方法分別叫“先一后二”和“先二后一”:
當然,有時候利用對稱性,可以大大簡化問題:
我們還介紹了柱坐標系、球坐標系,其體積元可以借助雅可比行列式計算出。這兩種坐標系常常能簡化問題,就如同二重積分中的極坐標一樣。
重積分后,我們有線、面積分:
曲線積分的一般方法如下:
曲面積分的一般方法如下:
接下來是本章最重要的公式之一——格林公式及其推論:
同為最重要的公式之一——高斯公式:
學(xué)期的最后,我們學(xué)習(xí)了級數(shù)的相關(guān)理論,審斂法需牢記~
我們又講了兩種重要的函數(shù)項級數(shù)——冪級數(shù)和傅里葉級數(shù)。冪級數(shù)其實同學(xué)們在學(xué)泰勒公式的時候已經(jīng)接觸到了~而傅里葉級數(shù),以三角級數(shù)擬合一般的周期函數(shù),它的提出是一種非常偉大的想法。傅里葉級數(shù)的公式稍微復(fù)雜,請同學(xué)們記住有關(guān)公式和結(jié)論,不要弄混淆了~
至此,高數(shù)(下)的內(nèi)容就回顧完了。
轉(zhuǎn)自:https://www.sohu.com/a/239378031_185748
總結(jié)
以上是生活随笔為你收集整理的高等数学(下)知识点总结的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: VCPKG 升级问题
- 下一篇: linux yum远程安装软件,Linu