startuml动态模型工具_动态面板模型估计方法简介以及stata应用
動態面板模型最主要的特征是在控制變量中加入了y的滯后項
,其中
代表控制變量, 代表固定效應, 代表殘差項由于加入了y的滯后項導致了采用常用固定效應估計方法會導致參數估計的不一致性,因此需要采用其他的估計方法。
本文主要分為4個部分:
1為什么不能采用固定效應以及ols等估計方法
2.動態面板模型的估計方法
3.動態面板模型的假設檢驗
4.stata應用
part 1 為什么不能采用固定效應的估計方法以及普通的ols
如果采用普通的ols,我們可以看出
和 存在相關性,因此不能采用ols進行估計,那如果我們采用固定效應估計,把
減去呢,實際上,即使通過減去均值的估計方法,我們依然發現其存在內生性。 ,但 和 仍然存在相關性,具體過程可以將上述式子展開,即可發現,常用的估計方法都無法使用,因此我們必須要想辦法解決這個問題,part 2 動態面板模型估計方法
2.1 difference gmm
常用的動態面板估計方法有2種,分別為difference gmm估計和system gmm估計方法,
difference gmm采用的方法是首先將固定效應去掉,原因是因為固定效應和y的滯后項相關
,但
和 依然相關,怎么辦,最常用的解決內生性的方法是什么,答:工具變量法,工具變量方法乃是解決內生性的良藥, 存在內生性,但 以及 及往后的滯后項都可以作為他的工具變量,因為這些變量既和 相關,有保證和 無關,哈哈,還算可以的工具變量,這么多工具變量,我們該如何選擇呢,首先
及其滯后項并不是很好的工具變量,原因在于減少了樣本量,因此我們選擇 以及其滯后變量作為工具變量,哈哈,完美了,接下來,我們就可以采用工具變量的方法進行估計了,但工具變量方法并不完美,因為我們隨機抽樣的樣本方差很大概率是不同的,有的樣本方差大,有的樣本方差小,很自然,方差小的樣本應該給與較大的權重,而方差大的樣本應該給與相對較小的權重,因為本文不以講解GMM為目的,因此只是簡要介紹了一下GMM的好處,因此我們采用diiference gmm的方法來估計。
2.2 system gmm
那既然difference已經解決了內生性,為什么還有發明system gmm估計呢?原因在于diiference gmm選擇的工具變量很有可能是弱工具變量,即相關性比較小,這樣會導致方差較大,結果不顯著。比如如果y接近于隨機游走的話,那么difference gmm選擇的工具變量為弱工具變量,那怎么辦呢
,又回到了最初的起點,我們選擇
及其滯后項作為其工具變量,并假設其 和 , 都不相關,因此得出估計量。由于這塊自我感覺解釋的比較少,而有很多文獻都說system gmm估計量優于diiference gmm,因此下面詳述一下system gmm的假設,當然system gmm由于其解決內生性的方法,能估計出隨著時間沒有改變的變量的值,如虛擬變量等。
正由于我們上文所說,difference gmm選擇工具變量很有可能是弱工具變量,原因就在于y和y的滯后項并不存在較強的相關性,那么弱工具變量會導致方差太大,估計結果不顯著,相信大多數人都把顯著性看作自己的命根子吧,因此有些人發明了system gmm估計方法,
其方法的主要邏輯就是選擇更好的工具變量,既能去除內生性,又能保證工具變量與解釋變量較強的相關性。
system gmm估計方法選擇直接選擇
的工具變量,選擇即 以及其滯后項作為其工具變量,但我們必須要假設其一
和 無關,注(此處表述略有不對,僅為方便理解),其二
和 無關,要保證此項需要保證 不存在序列相關,在這兩個假設下,system gmm才是一致的。
因此system gmm需要在此上述兩個假設以及y的滯后項并沒有包含很多y的信息的情況下,才應該用system gmm
part 3 動態面板模型常用的假設檢驗
part3.1 對自相關的檢驗
其主要目的就是為了檢驗
是否存在自相關,如果存在自相關的話,會導致內生性,那么difference gmm就需要選擇更滯后的y作為其工具變量,system gmm就不成立了。但我們并不能直接得到
的值,無法直接檢驗,一般情況下我們通過差分的形式來檢驗,通過差分的形式我們可以去掉固定效應,但如果檢驗 和 ,我們發現其存在內生性,因此我們選擇檢驗 和 的相關性,這也就是AR(1)和ar(2)檢驗,也就是是必須通過AR(2)檢驗,才能保證工具變量的有效性。
part 3.2 過度識別檢驗(hasen 和sargon檢驗)
其檢驗的目的是為了識別工具變量是否為完全外生,如果工具變量的個數與所需估計參數的個數相等,那么我們無法檢驗出工具變量的有效性,但如果工具個數如果大于所需要估計參數的個數,那么我們具有多余的工具變量進行檢驗。
相對好理解這種檢驗的方式是通過不同的工具變量估計出來的參數結果應該是接近的,不應該有很大的不同。
假設檢驗的形式為
在原假設工具變量均為有效工具變量的情況下,其應該服從均值為0的正太分布,也就是說原假設為真的情況下,p值應該大于0.10。
那么sargon檢驗和hasen檢驗有什么區別呢
sargon檢驗在假設殘差項具有同方差的情況下估計出來的結果,但在工具變量較多的情況下穩健
而hasen檢驗假設在異方差的情況下,對各樣本的權重進行了估計,但在工具變量較多的情況下穩健。
part 4 stata應用
其基本的語法為
xtabond2 y l.y x1 x2 ...xn ,gmm(l.y,lag(1 任意數字) iv(x1 x2 ...xn) ort small robust
很明顯xtabond2 后面先接所有的變量,然后GMM里面接y的滯后項,后面的lag表示你選擇的工具便令,iv后面接所有的變量除了y和y的滯后項
ort代表的是去除固定效應的一種變換,相對差分GMM可以增大樣本量
small表示針對小樣本也有效
robust表示計算的是穩健性標準誤
two表示是gmm估計的針對二階段的一種估計方法,默認為one step
xtabond2 默認執行difference gmm,
針對xtabond2的option請見stata help種關于其的講解,本部分只做簡單介紹
總結
以上是生活随笔為你收集整理的startuml动态模型工具_动态面板模型估计方法简介以及stata应用的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: DXEnum.exe是什么进程 DXE
- 下一篇: dxnf.exe是病毒进程吗 dxnf进